

流出計算ソルバー

S R M

(Storage Routing Model)

計 算 例

Release Date: 2014.7.10

Copyright 2014 iRIC Project All Right Reserved.

目次

1.	ソルバー「S	RM」を用いた流出計算の作業手順	. 1
2.	ソルバー「S	RM 」を用いた流出計算例	. 2
3.	SRM の起動		. 3
4.	計算例 1-1	:1段タンク型貯留関数モデルによる流量計算	. 4
5.	計算例 1-2	:2 段タンク型貯留関数モデルによる流量計算	10
6.	計算例 2-1	:1段タンク型貯留関数モデルのモデル定数の同定と流出計算	16
7.	計算例 2-2	:2段タンク型貯留関数モデルのモデル定数の同定と流出計算	22

1. ソルバー「SRM」を用いた流出計算の作業手順

ソルバー「SRM」を使う場合の基本的な手順は次のとおりです. 次章では SRM の起動方法を 説明し,3章以降では実例を示しながら操作方法を解説します.

iRIC ソフトウェアをインストールしていない場合は、以下からソフトウェアをダウンロード・ インストールしてください.

URL:	http://i-ric.org/ja/downloads
ソフトウェア:	iRIC version2.3

計算例で使用するサンプルデータは、以下からダウンロードできます.

URL: http://i-ric.org/ja/software/21

サンプルデーター覧

データ名	ソルバー・タイプ
Sample1.txt	流出量の計算(計算例 1-1, 1-2)
Sample2.txt	モデル定数の最適化と流出量の計算(計算例 2-1,2-2)

- 2. ソルバー「SRM」を用いた流出計算例
- ◆ 目的

A川X地点の流域平均雨量から、X地点の流出量を計算します.

A川X地点流域

◆ 概要

1. 入力データの作成

「流出量の計算」ソルバーを使用する場合は雨量データから,「モデル定数の最適化と流出量の計算」ソルバーを使用する場合は雨量及び流量データから入力データを作成します.

- 2. 計算条件の設定
- 3. 計算実行
- 4. 計算結果の可視化

計算結果からハイドログラフ及びハイエトグラフを表示します.

3. SRM の起動

iRIC を起動しますと次に示す「iRIC スタートページ」画面が表示されます.この画面で「新しいプロジェクト」ボタンをクリックします.「ソルバーの選択」画面が表示されますので,ソルバー「SRM」を選択し「OK」ボタンをクリックします.

100 スタートページ	→ → ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	
計算プロジェクトを始める 新算プロジェクトを始める 新しいプロジェクト(N) 最近使ったソルバー:	サポート プロジェクトファイルを開く(Q) 最近間いたプロジェクト・	
Copingst Maxedo Mach delittiow Copingst Maxedo Mach delittiow Copingst Maxedo Mach (1)「新し を選択し Morpho2D	Ctan_#8C02_#巻き都将デーがact.jpro ハプロジェクト(N)」 ます. 3 dem20140012	
Copylight マソルバーの選択 新しいプロジェクトを開 ください。	いたまでは、解析に利用するソルバーを選択する必要があります。以下のリストからソルバーを選択し、"OK"市タン	を押して
CERIID V1.0 delftflow Elimo FaSTMECH Morpho2D Nays2D 4.2 32bit	名前 SRM (2)ソルバ「SRM」 を選択します.	
Nays2D Flood v4. NaysCUBE v2.33. River2D SToRM	32 bit 32 bit (3)「OK」をクリック します.	

プリプロセッサーが表示されれば、SRM の起動は完了です.

2 1	題 - iRI(C [SRM]								• ×	<u> </u>
ファ	イル(E)	インボート(<u>I</u>)	地理情報(<u>E</u>)	格子(<u>G</u>)	実測値(<u>M</u>)	計算条件(C)	計算(<u>S</u>)	計算結果(<u>R</u>)	表示(⊻)		»
1		9 19 CH	≚ Ľ*	Y _X Z _Y Z _X	* + *	🖡 🔍 ପ୍	++ ++ \$: :	🤌 🔳 🌆	20 50	»
+	+ ×										
	🧷 プ!	ノプロセッサー								×	
	オブジェク	トブラウザー		×							
	V	□ 実測値									
	~	□ 育景画係 ○ 広価軸									
	V	Distance M	Pasure								
			Lubure								
					Υ_ κ						
							X: 0.941	059052944	Y: 1.296034	09767	

4. 計算例 1-1 :1 段タンク型貯留関数モデルによる流量計算

計算内容

以下に A 川 X 地点の流域平均雨量が与えられています.この雨量データを用いて流出計算を行います.

【時間雨量表】

経過時間	時間雨量	経過時間	時間雨量
(h)	(mm/h)	(h)	(mm/h)
1	0.00	25	0.22
2	0.20	26	0.18
3	1.28	27	0.33
4	2.28	28	0.00
5	2.02	29	0.33
6	3.84	30	0.00
7	4.33	31	0.00
8	5.43	32	0.00
9	9.77	33	0.00
10	9.04	34	0.00
11	8.42	35	0.00
12	7.19	36	0.00
13	6.44	37	0.00
14	7.24	38	0.00
15	5.63	39	0.00
16	2.67	40	0.00
17	0.83	41	0.00
18	0.61	42	0.00
19	0.48	43	0.00
20	0.77	44	0.00
21	0.00	45	0.00
22	0.08		
23	0.00		
24	0.75		

計算条件

流域面積	234.1 km^2	
計算モデル	1 段タンク型貯留関数モデル	
計算開始時の流量	2.00 m ³ /s	
モデル定数	$c_1 = 12.501, c_2 = 0.134, c_3 = 1.752$:北海道代表值
減衰係数	λ=0.019 :北海道代表値	

作業手順

1) 雨量データファイルを作成します.

データファイルを右図に示します.1列目はデー タ番号,2列目は雨量データです.計算する時間数 分だけ縦に並べます.雨量データの単位は mm/h, データの区切りは,タブ,半角スペース,カンマ(,) のいずれかにして下さい.計算できる時間数の上限 は168 時間(7日)です.

ファイルを作成し、保存して下さい.

なお,雨量データは iRIC 上で入力することもで きます(次頁参照).ここでは,iRIC 以外のソフト ウェアを用いて作成したテキストデータをインポ ートする方法を説明します.

🚺 C:	¥91_iRIC¥	2013062	0		x
רכ 🗄	ァイル(<u>E</u>)	編集(<u>E</u>)	検索(<u>S</u>)	表示(<u>v</u>) »
	- 👌 🖫	🕹 🖻	X »	ש–	JL ≫
1→	04				
2→	0.24				
3→	1.28↓				
4→	2.28↓				
5→	2.02↓				
6→	3.84↓				
7→	4.33↓				-
Text	9行, 7桁	日本語	(自動選生)	.ał

雨量データファイル

2) ソルバー「SRM」を起動します.

iRICを起動し、ソルバー「SRM」を起動します. 起動方法は第3章をご参照ください.

計算条件を設定します.

メニューバーの「計算条件」-「設定」をクリックします.「計算条件」画面が表示されます.

□ ■ ● ● ● ● ● ● ● ○ ○ ○ ○ ○ ● ● ● ● ● ● ●	■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	1 15a -
オブジェ2トプラウザー × ▽ □ 実別値 ▽ □ 新意画像 ▽ □ 序標軸	 ★ エクスポート(E) (1) 	「設定」をクリッ します.
12 計算条件		-2
グループ 計算条件	ソルバー・タイプの選択 (流出量の) 計算モデルの選択	計算 * 11825-20型行留開鉄モデル *
	洪水店 Example 1	
	流域面積 ().m2)	100
	計算開始時点の定量(m3/a) 1f892-20型貯留開数モデルの定数	
	モデル定数 c1 モデル定数 c2 モデル定数 c3	減収係数 2
	12:261 0.134 249次ング集字(金額数モデルの定数 モデル定数 c1 モデル定数 c2 モデル定数 c3 単 55 (2304) 2	1.752 0.019 地下水分離時定欲 Tc 408 61.7
	入力ファイル(雨量データ)	140.9%;

ソルバー・タイプの選択で「流出量の計算」,計算モデルの選択で「1段タンク型貯留関数モデル」を選択し,流域面積などの条件を「計算条件」画面で入力します.

次に,入力ファイル(雨量データ)の「編集」ボタンをクリックし,「インポート」ボタンによ ってデータファイルを指定します.

以上の作業が終了したら「保存して閉じる」ボタンをクリックします.

以上で,計算条件の設定は終了です.

4) 計算を実行します.

メニューバーの「計算」-「実行」をクリックすると計算が開始されます.

	「実行」ボタンをクリックします.
▶ 無題 - IRIC [SRM] - [プリプロセッサー] ▶ ファイル(F) インボート(T) 助理情報(F) 格子(G) 室刻値(M) 計算多位(F)	
オブジェクトブラウザー × マ (論) 実別値 マ (論) 実別値	 ジルパー情報(5) ジリルパーログのエクスポート(E)
☑ □ 座標論	
	X: 1.8609650135 Y: 1.28815555573

計算が終了すると、次のメッセージが表示されます.

2 #	題 - iRIC [SRM]	ר⊏−אוען -	レンール [SRM] (停止)]	_ - ×
	7アイル(F) イン	レポート(I) 計	算(S) 計算結果	e(R) 表示(V) オプション(O) ヘルプ(H)	_ 8 ×
1 🖻	🔒 🙆 🥎 🖆) (** ©, <u> *</u> ×	$\underline{F}_{0} \mid \underline{A}^{0} \mid \underline{A}^{0} \times \underline{A}^{0} $	x ← ⇒ ☆ ↓ @, @, ++ ++ ‡ ‡ ▶ 2 M 🖗 🖗 🛀 !!. 3	0
2	プリプロセッサー	_			<u>^</u>
オブ	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,	0.00, 0.75, 0.22, 0.18, 0.33, 0.00, 0.33, 0.00, 0.00, 0.00, 0.00, 0.00,	114.18 107.97 101.80 95.62 89.66 83.93 78.51 73.43 68.62 64.10 59.89	 ジルバー終了 ジルバーの計算が除了しました。 OK 	
	34, 35, 36,	0.00, 0.00, 0.00,	56.00 52.40 49.09		-
•				"" X: Y:	

計算が終了すると以下のソルバーコンソール画面が開き,計算条件と計算結果が表示されます. モデル定数などがソルバー「SRM」に正しく引き渡されたかを確認することができます.

💦 test.ipro - iR	IC [SRM] - [עו	バーコンソール	/[SRM] (停止)]		_ _ ×				
🔳 ファイル(<u>E</u>)	インポート(<u>I</u>)	計算(<u>S</u>) 計算	算結果(<u>R</u>) 表示	(⊻) オプション(<u>0</u>)	へレプ(<u>H</u>) - ≞ ×				
i 🗁 🔜 🙆 🍣		1× 13° ×	洪水名	≜	++ ‡ ‡ 🕨 »				
Flood Name -> A River X Point									
Model	> Synthetic s	torage routin	ng model						
Area(km2)	> 234.10	>		· · · · · · · · · · ·					
lambda	> 0.019			流出モテル	/名				
<< Parameters	>>		+ 算条件						
CI>	0 124								
03>	1 752								
03>	1.752								
<< Result >>									
No, Robs	(mm h-1),Qcal	(m3 s-1)							
1,	0.00,	2.00							
2,	0.20,	2.01							
3,	1.28,	2.08							
4,	2.28,	2.32							
5,	2.02,	2.76							
6,	3.84,	3.52							
7,	4.33,	4.81							
		~~							
	雨景	計質法長	∧;	Y: -					
	的里	二 一 异 加 5	≝)						

5) iRIC の標準機能を用いて計算結果をグラフに表示します.

メニューバーの「計算結果」-「新しいグラフウィンドウを開く」をクリックすると、「データ ソース設定」画面が表示されます.

net lipro - iRIC [SRM] - [ソルバーコンソ	ノール [SRM] (停止)]
■ ファイル(F) インポート(I) 計算(S)	計算結果(R) 表示(V) オプション(O) ヘルプ(H) - B×
📄 🔜 🙆 🍥 🗂 (* 🔍 🖄 📩 (*	🐜 新しい 可視化ウィンドウ(2D) を開く 🛛 🕨 »
Flood Name -> A River X Point	新しい 鳥瞰図可視化ウィンドウ(2D) を開く ▲
Model> Synthetic storage ro Area(km2)> 234.10	30 新しい 可視化ウィンドウ(3D) を開く
lambda> 0.019	ビ 新しいグラフウィンドウを聞く
<< Parameters >>	● 実測値と比較 ■
c1> 12.501 c2> 0.134	
c3> 1.752	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
<< Result >>	
No,Robs(mm h-1),Qcal(m3 s-1) 1, 0.00, 2.00	
2, 0.20, 2.01	▼ エクスポート(E)
4, 2.28, 2.32	可視化・グラフ設定のインボート
5, <u></u>	?
7, ※9曲: 時表刻 💌	
計算結果外部	
ポイントデータ	選択したデータ
Robs(mm h-1)	
Qcal(m3 s-1)	追加>>
	<< 肖邶余
	<u> </u>
_	Robs(mm h-1)は雨量, Ocal(m3 c 1)は計算法号たまします
	Qual(III) S-1/IA目 弁/IL里と衣しまり.

「データソース設定」画面において、グラフ化するデータを選択します. グラフに表示するデ ータ名を選択し「追加」ボタンをクリックします. 選択されたデータは「選択したデータ」枠内 に、データ名が表示されます. ここでは、雨量「Robs(mm h-1)」と計算流量「Qcal(m-3 s-1)」を 選択しています. データの選択が終了したら「OK」ボタンをクリックします.

X軸 時刻 マ (1/20920Cま9) 計算結果 外部		
#イントデータ Robs(mm h-1) Qcal(m3 s-1) (2)「追加」ボタンをク リックします OK	**>±1	
※ アータソース設定 ※	F-タソース設定 1 頃日 - 1 頃日 - 1 頃日 - 1 頃日 - 1 頃日 - 1 頃日 - (小田 (小田	

データの選択が終了すると以下のグラフが表示されます. iRIC の標準機能を使い,表示する軸 や線種等を修正することができます. 詳細は「iRIC Software User's Manual 5.2 グラフ描画機 能」をご覧ください.

iRICの標準機能(軸設定, 描画設定)により, 軸や線種等を指定します

5. 計算例 1-2 : 2 段タンク型貯留関数モデルによる流量計算

計算内容

以下に A 川 X 地点の流域平均雨量が与えられています. この雨量データを用いて流出計算を行います.

【時間雨量表】

経過時間	時間雨量	経過時間	時間雨量
(h)	(mm/h)	(h)	(mm/h)
1	0.00	25	0.22
2	0.20	26	0.18
3	1.28	27	0.33
4	2.28	28	0.00
5	2.02	29	0.33
6	3.84	30	0.00
7	4.33	31	0.00
8	5.43	32	0.00
9	9.77	33	0.00
10	9.04	34	0.00
11	8.42	35	0.00
12	7.19	36	0.00
13	6.44	37	0.00
14	7.24	38	0.00
15	5.63	39	0.00
16	2.67	40	0.00
17	0.83	41	0.00
18	0.61	42	0.00
19	0.48	43	0.00
20	0.77	44	0.00
21	0.00	45	0.00
22	0.08		
23	0.00		
24	0.75		

計算条件

流域面積	234.1 km^2
計算モデル	2 段タンク型貯留関数モデル
モデル定数(初期値)	<i>c</i> ₁ =8.803, <i>c</i> ₂ =0.304, <i>c</i> ₃ =2.499 :北海道代表値
地下水分離時定数	T _c =61.7 :北海道代表值

作業手順

1) 雨量データファイルを作成します.

データファイルを右図に示します.1列目はデー タ番号,2列目は雨量データです.計算する時間数 分だけ縦に並べます.雨量データの単位は mm/h, データの区切りは,タブ,半角スペース,カンマ(,) のいずれかにして下さい.計算できる時間数の上限 は168 時間(7日)です.

ファイルを作成し、保存して下さい.

なお,雨量データは iRIC 上で入力することもで きます(次頁参照).ここでは,iRIC 以外のソフト ウェアを用いて作成したテキストデータをインポ ートする方法を説明します.

🚺 C:	¥91_iRIC¥	2013062	0		x
רכ 🗄	ァイル(<u>E</u>)	編集(<u>E</u>)	検索(<u>S</u>)	表示(<u>v</u>) »
	- 👌 🖫	🕹 🖻	X »	ש–	JL ≫
1→	04				
2→	0.24				
3→	1.28↓				
4→	2.28↓				
5→	2.02↓				
6→	3.84↓				
7→	4.33↓				-
Text	9行, 7桁	日本語	(自動選生)	.ał

雨量データファイル

2) ソルバー「SRM」を起動します.

iRICを起動し、ソルバー「SRM」を起動します. 起動方法は第3章をご参照ください.

計算条件を設定します.

メニューバーの「計算条件」-「設定」をクリックします.「計算条件」画面が表示されます.

C	(y ^I _×) ◆ ◆ ◆ ● 設定(S) (→ インボート(I) (→ エクスポート(E)	(1)「設定」をクリックします。
2 〕 反噬結		
ヴループ 計算条件	ソルパー・タイプの選択 計算モデルの選択	(満出量の計算 ▼) [160かり型件留開数モデル ▼]
	洪水浩 Exam	ple 1
	流逝而倚 (km2)	100
	計算環境に考慮の定量(m3/s) 159次の理由全部開始モデルの定義	1
	モデル定数 c1 モデル定数 c2	モデル定数 c3 . 滤液体数 A
	12.501	0.134 1.752 0.019
	248タンク生活学習慣慣数モデルの定義	11
	モデル定数 c1 モデル定数 c2	モデル定数 c3 地下水分離時定数 Tc
	8.803	2.499
	M	
	入力ファイル(商量データ)	総束

ソルバー・タイプの選択で「流出量の計算」,計算モデルの選択で「1段タンク型貯留関数モデル」を選択し,流域面積などの条件を「計算条件」画面で入力します.

次に,入力ファイル(雨量データ)の「編集」ボタンをクリックし,「インポート」ボタンによ ってデータファイルを指定します.

以上の作業が終了したら「保存して閉じる」ボタンをクリックします.

以上で,計算条件の設定は終了です.

4) 計算を実行します.

メニューバーの「計算」-「実行」をクリックすると計算が開始されます.

			「実行」ボタン す.	をクリックしま
2 無題 - IRIC [SRM] - [フリフロゼッサー]				
プァイル(F) インボート(I) 地理情報(E) 格子(G) 美憑値(M) 計算条件(C)	Et #	₽(S) 計算結果 表	ホ(V) オフション(O)	~/LZ(H) - ≞ ×
📄 🖬 🙆 🎯 🔎 🍽 🍭 🖾 🔡 🕮 🏹 🏹 🖛 🌩 🛔 🖡 🔍 🧠 I 🕯		実行(R)	Ctrl+R	🚱 🕙
+ + ×		停止(S)		
オブジェクトブラウザー ×		ソルバー情報(S)		
		NUL-Dガのエクフォ	ff 5(E)	
	1.07	5767C 13505157XA	N 1.(C)	
		_		
		X:	1.8609650135 Y	: 1.28815555573

計算が終了すると、次のメッセージが表示されます.

2	題 - iRIC [SRM]	- [עוע]-ם	レソール [SRM] (停止)]	– – X
	ファイル(F) イン	ポート(I) 🚮	算(S) 計算結果	!(R) 表示(V) オプション(O) ヘルプ(H)	_ <i>8</i> ×
1	🖬 🙆 📎 🗠		th ⁹⁰ Y _× Z _Y ⊃	< 🖛 🖬 🛊 🍳 🔍 ++ ++ 🌲 🔭 📄 🥭 📾 🛍 🕰 🔝 🛷	0
2	プリプロセッサー				<u>^</u>
<i>オブ5</i>	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,	0.00, 0.75, 0.22, 0.18, 0.33, 0.00, 0.33, 0.00, 0.00, 0.00, 0.00,	114.18 107.97 101.80 95.62 89.66 83.93 78.51 73.43 68.62 64.10 59.89	■ ソルバー検T ・ ソルバーの計算が終了しました。 OK	E
	34, 35, 36,	0.00, 0.00,	56.00 52.40 49.09	"	-
				X: Y:	-

計算が終了すると以下のソルバーコンソール画面が開き,計算条件と計算結果が表示されます. モデル定数などがソルバー「SRM」に正しく引き渡されたかを確認することができます.

🔃 Oowada.ipro - iRIC [SRM] - [ソルバーコンソール [SRM] (停止)]	
■ ファイル(E) インボート(I) 計算(S) 計算結果(R) まテハル オブション(Q) /	ULJ(H) _ B ×
🗁 🔜 🕥 🌕 (🔍 🔍 🖄 🖄 🖌 🗼 🗮	⊕, ⊝, ++ ++ ‡ ‡ ▶ ⇒
Flood Name -> A River X Point	<u> </u>
Model> Two cascade storage routing model	
Area(km2)> 234.10 Tc> 61.70	流出モデル名
C Parameters >>	
c1> 8.803 計算条件	
c2> 0.304	
c3> 2.499	
<< Result >>	
No, Robs(mm h-1), Qcal(m3 s-1)	
1, 0.00, 2.00	
2, 0.20, 2.00	
3, 1.28, 2.06	
4, 2.28, 2.28	
5, 2.02, 2.69	
6, 3.84, 3.40	
1, 4.33, 4.62	
	Y:
	111
□ 并 师 里	

5) iRIC の標準機能を用いて計算結果をグラフに表示します.

メニューバーの「計算結果」-「新しいグラフウィンドウを開く」をクリックすると、「データ ソース設定」画面が表示されます.

👔 test.ipro - iRIC [SRM] - [ソルバーコンソール [SRM] (停止)]						
■ ファイル(F) インポート(I) 計算(S)	計算結果(R) 表示(V) オプション(O) ヘルプ(H) - B ×					
📄 🗖 🙆 🥯 🔊 (*) 🍳 🖄 😫 📔	20 新しい 可視化ウィンドウ(2D) を開く >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					
Flood Name -> A River X Point	20 新しい 鳥瞰図可視化ウィンドウ(2D) を開く					
Model> Two cascade storage Area(km2)> 234.10	30 新しい 可視化ウィンドウ(3D) を開く					
Tc> 61.70						
<< Parameters >>	□ 実測値と比較 ■					
c1> 8.803 c2> 0.304						
c3> 2.499	● 再読が込み(K)					
<< Result >>						
No,Robs(mm h-1),Qcal(m3 s-1) 1, 0.00, 2.00	インポート(I)					
2, 0.20, 2.00						
4, 2.28, 2.28	可視化・グラフ設定のインポート					
5, 6, ビーデータソース設定	?					
7, → → ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	1					
計算結果外部						
ポイントデータ	違択したデータ					
Robs(mm h-1)						
Qcal(m3 s-1))自加>>					
	<< 肖川印余					
	OK キャンセル					
	Robs(mm h-1)は雨量,					
	Qcal(m3 s-1)は計算流量を表します.					

「データソース設定」画面において、グラフ化するデータを選択します. グラフに表示するデ ータ名を選択し「追加」ボタンをクリックします. 選択されたデータは「選択したデータ」枠内 に、データ名が表示されます. ここでは、雨量「Robs(mm h-1)」と計算流量「Qcal(m-3 s-1)」を 選択しています. データの選択が終了したら「OK」ボタンをクリックします.

データソース設定	? ×	
(1)クリックします ×軸:時刻 ▼		
計算結果外部		
ポイントデータ 選択	尺したデータ	
Robs(mm h-1)		
Qcal(m3 s-1)		
<< 肖明余		
(2)「追加」ボタンをク	設定(S)	
リックします	OK キャンセル	
マーテークソーフ設定 ?	X = X = − − − ス設ま	? ×
	XBR RACI +	
/## ■1201 ▼ 計算結果 外部	計算結果 外部	
ポイントデータ 違択したデータ	ポイントデータ	潮訳したデータ
Qcal(m3 s-1) Robs(mm h-1	1)	Robs(mm h-1) Qcal(m3 s-1)
《 百郎余		670 >> < 8/68
ここにデータ名が表示さ		10(22(5)
れ,そのデータが選択さ	·>+2,1	OK 4424
れたとを表します。		ζ
	(3)「OK」ボタンをク	
	リックします.	

データの選択が終了すると以下のグラフが表示されます. iRIC の標準機能を使い,表示する軸 や線種等を修正することができます. 詳細は「iRIC Software User's Manual 5.2 グラフ描画機 能」をご覧ください.

iRICの標準機能(軸設定,描画設定)により,軸や線種等を指定します

6. 計算例 2-1 :1 段タンク型貯留関数モデルのモデル定数の同定と流出計算

計算内容

以下に A 川 X 地点の流域平均雨量と実測流量が与えられています.これらのデータを用いて, 実測流量を最も精度良く再現し得る流出モデル定数を求め,求められた定数を用いた流出計算を 行います.

【時間雨量・流量表】

経過時間	時間雨量	流量	経過時間	時間雨量	流量
(h)	(mm/h)	(m^3/s)	(h)	(mm/h)	(m^3/s)
1	0.00	3.22	24	0.75	141.14
2	0.20	3.22	25	0.22	128.80
3	1.28	3.38	26	0.18	117.50
4	2.28	3.38	27	0.33	107.16
5	2.02	3.53	28	0.00	97.72
6	3.84	3.69	29	0.33	89.11
7	4.33	4.19	30	0.00	82.43
8	5.43	5.28	31	0.00	76.01
9	9.77	8.30	32	0.00	70.57
10	9.04	17.79	33	0.00	65.66
11	8.42	36.43	34	0.00	61.94
12	7.19	66.70	35	0.00	57.67
13	6.44	98.98	36	0.00	54.50
14	7.24	128.80	37	0.00	50.80
15	5.63	157.29	38	0.00	47.58
16	2.67	181.50	39	0.00	44.46
17	0.83	196.31	40	0.00	41.82
18	0.61	202.54	41	0.00	39.98
19	0.48	201.84	42	0.00	37.47
20	0.77	194.26	43	0.00	35.39
21	0.00	183.48	44	0.00	33.70
22	0.08	169.81	45	0.00	32.06
23	0.00	156.06			

計算条件

流域面積	234.1 km^2	
計算モデル	1 段タンク型貯留関数モデル	
計算開始時の流量	2.00 m ³ /s	
モデル定数	c_1 =12.501, c_2 =0.134, c_3 =1.752	:北海道代表值
減衰係数	λ=0.019 :北海道代表値	

作業手順

1) 雨量データファイルを作成します.

データファイルを右図に示します.1列目はデー タ番号,2列目は雨量データ,3列目は流量データ です.計算する時間数分だけ縦に並べます.雨量デ ータの単位は mm/h,流量データは m³/s です.デー タの区切りは,タブ,半角スペース,カンマ(,) のいずれかにして下さい.計算できる時間数の上限 は168 時間(7日)です.

ファイルを作成し、保存して下さい.

なお,雨量データは iRIC 上で入力することもで きます(次頁参照).ここでは,iRIC 以外のソフト ウェアを用いて作成したテキストデータをインポ ートする方法を説明します.

🚺 C:¥91_iRIC	¥2013062	0_3		x
ファイル(<u>E</u>)	編集(<u>E</u>)	検索(<u>5</u>)	表示(⊻)	د «
📄 👻 🆻 🖡	1 🕹 🖻	1 X D	-ע 🖇	-ル »
1→ 0→ 3.	22↓			
2→ 0.2→3.	22↓			=
3→ 1.28→	3.38↓			
4→ 2.28→	3.38↓			
5→ 2.02→	3.53↓			
6→ 3.84→	3.69↓			
7→ 4.33→	4.19↓			
8→ 5.43→	5.28↓			
9→ 9.77→	8.3↓			-
(Text 1行, 1桥	〕 日本語	(自動選択)	

雨量・流量データファイル

2) ソルバー「SRM」を起動します.

iRICを起動し、ソルバー「SRM」を起動します. 起動方法は第3章をご参照ください.

3) 計算条件を設定します.

メニューバーの「計算条件」-「設定」をクリックします.「計算条件」画面が表示されます.

Community (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(* ***********************************
計算条件	ソルパータイプの選択 遠出量の計算 ・
	計算モデルの選択 1199ンク型庁留開数モデル マ
	洪水名 Example 1
	計算(開始)(中心の)(定量(m3/c) (150// 小型時年6月開始)(デデルの宗教)
	モデル定数 c1 モデル定数 c2 モデル定数 c3 減聚係数 3
	12501 0.134 1.752 0.019
	248次ンク型理?留期間執モデルの定義
	モデル定数 c1 モデル定数 c2 モデル定数 c0 地下水分離時定数 Tc
	8803 0.304 2499 ft17
	入力ファイル(雨量データ) 編集 入力ファイル(雨量:活量データ) 細葉

ソルバー・タイプの選択で「モデル定数の最適化と流出量の計算」,計算モデルの選択で「1段 タンク型貯留関数モデル」を選択し,流域面積などの条件を「計算条件」画面で入力します.

次に,入力ファイル(雨量・流量データ)の「編集」ボタンをクリックし,「インポート」ボタンによってデータファイルを指定します.

以上の作業が終了したら「保存して閉じる」ボタンをクリックします. 以上で,計算条件の設定は終了です.

4) 計算を実行します.

メニューバーの「計算」-「実行」をクリックすると計算が開始されます.

			「実行」ボタン す.	をクリックしま
2 無題 - IRIC [SRM] - [フリフロゼッサー]				
プァイル(F) インボート(I) 地理情報(E) 格子(G) 美憑値(M) 計算条件(C)	Et #	₽(S) 計算結果 表	ホ(V) オフション(O)	~/LZ(H) - ≞ ×
📄 🖬 🙆 🎯 🔎 🍽 🍭 🖾 🔡 🕮 🏹 🏹 🖛 🌩 🛔 🖡 🔍 🧠 I 🕯		実行(R)	Ctrl+R	🚱 🕙
+ + ×		停止(S)		
オブジェクトブラウザー ×		ソルバー情報(S)		
		\/II.パーログのエクフォ	ff 5(E)	
	1.07	5767C 13505157XA	N 1.(C)	
		_		
		X:	1.8609650135 Y	: 1.28815555573

計算が終了すると、次のメッセージが表示されます.

	in alla	17. 15" Ye	· ん · · · · · · · · · · · · · · · · · ·	▶ ■ ▲ ■ 粉 各 粉 ビ ト !
23	0.00	156.06	157.65	and the first sectors.
24.	0.75	141.14	147.76	
25.	0.22	128,80,	128.88	
26.	0.18.	117.50.	116.09	
27.	0.33.	107.16.		
28.	0.00.	97,72,	# VIUI-197 83	
29.	0.33.	89.11		
30.	0.00.	82.43.	A 100 0 - 00000000 71 - 00000000000000000	
31.	0.00.	76.01.	(1) 2/0/(-0)(100/0/0/0/0/0/0/C/	
32.	0.00.	70.57.	•	
33.	0.00,	65.66,		
34,	0.00,	\$1.94,	CK	
35,	0.00.	57.67,		
36,	0.00.	54.50,	52.57	
37.	0.00,	\$0.00,	50.37	
38,	0.00,	47.58,	48.51	
39,	0.00,	44.46,	46.95	
40.	0.00,	41.02,	45.64	
41,	0.00,	39.98,	44.53	
49	0.00	97.47	43 88	

計算が終了すると次のソルバーコンソール画面が開き,計算条件と計算結果が表示されます.モデル定数などがソルバー「SRM」に正しく引き渡されたかを確認することができます.

<mark>〒Oowada_2.ipro - iRIC [SRM]</mark> ■ ファイル(E) インボート(I) 計算(S <mark> </mark>	- [ソルバーコンソ)計算結果(B) ; ∐× ピ゜ メメイ	ール 表示() 洪:	水名 り (*	× _ & ×
Flood Name -> A River X P Model> Synthetic s Area(km2)> 234.10 lambda> 0.019	oint torage routing	g model	流出モデ	<u>▲</u> ル名
<< Initial Parameters >> c1> 12.501 c2> 0.134 c3> 1.752	初期	パラメータ		
<< Optimized Parameters >> c1> 8.367 c2> 0.191 c3> 1.292	一 最i	適パラメ ―タ	2	_
<< Accuracy indexs >> RMSE(m3 s-1) Nash-Sutcliff efficiency	> 5.086 > 0.994	一誤	差指標	
<< Result >> No,Robs(mm h-1),Qobs	(m3 s-1),Qcal	(m3 s-1)	是滴パラ	<u></u>
1, 0.00,	3.22,	3.22		
3. 1.28.	3.38.	3.39	タを用いて	計昇
4, 2.28,	3.38,	3.88	した流量	
5, 2.02,	3.53,	4.78		
6, 3.84,	3.69,	6.35		
7, 4.33,	4.19,	9.03		
8, 5.43,	5.28,	13.30		_
雨量]	実測流量		計算流量	

5) iRIC の標準機能を用いて計算結果をグラフに表示します.

メニューバーの「計算結果」-「新しいグラフウィンドウを開く」をクリックすると、「データ ソース設定」画面が表示されます.

itest.ipro - IRIC [SRM] - [ソルバーコン!	ノーJL (SRM) (停止))	
ファイル(F) インボート(I) 計算(S)	【計算稿果(R) 表示(V) オプション(O) ヘルプ(H)	_ # ×
	脳 新しい可視化ウィンドウ(2D)を聞く	▶ = 2 = 5 ×
c1> 0.003	参 新しい意地回向現化ウィンドウ(2D)を整く	
c2> 0.304 c3> 2.499	脳 新しい可能化ウィンドウ(3D)を聞く	
< Optimized Farameters >>	ビ 新しいグラフウィンドウを開く	7
c1> 7.204	19、采用市上出版	
c2> 0.300 c3> 1.713		
Accuracy indexe >>	9 再読み込み(R)	
RMSE(m3 s-1)>	▲ mat(D)	
Nash-Sutcliff efficiency>	インボート(I)	
Result >>	● エクスポート(E)	
1, 0.00, 3.22	● 可能化・パラフ設定のインポート	クリックします
2. 0.20, 3.22	● 可得た・グラフ段まのエクスポート	
4, 2.28, 3.38		
5, 2.02, 3.53 6. 3.04. 3.69	, 4.51 , 5.85	
7, 4.33, 4.19	8.19	
1, 5,43, 5,21	, 11.99	
データソース設定		
計算結果 外部 ポイントデータ		たデータ
Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	<u>追加 >></u> << 削除	
	E¢.	定(S)
· · · · · · · · · · · · · · · · · · ·		
	\	OK キャンセル
	Robs(mm h-1)は同	肉童,
	Qobs(m3 s-1)は実	[測,
	Qcal(m3 s-1)は計	算流量を表します。
	200,000 0 1/10/11	

「データソース設定」画面において、グラフ化するデータを選択します. グラフに表示するデ ータ名を選択し「追加」ボタンをクリックします. 選ばれたデータは「選択したデータ」枠内に、 そのデータ名が表示されます. ここでは、雨量「Robs(mm h-1)」と実測流量「Qobs(m-3 s-1)」 と計算流量「Qcal(m-3 s-1)」を選択しました. データの選択が終了したら「OK」ボタンをクリ ックします.

データソース設定 ① クリックします 計算結果 外部	
ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1) Qcal(m3 s-1) 副語(したデータ 通知のと 「日本日」 「日本日 「日本日」 「日本日」 「日本日」 「日本日 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日」 「日本日 「日本日」 「日本日」 「日本日」 「日本日 「日本日」 「日本日」 「日本日」 「日本日 「	
②「追加」ボタン をクリックします	OK キャンセル ブ ブ データソース設定 ショー
· · · · · · · · · · · · · · · · · · ·	X46 (450) • 1110354 (455
ポイントデーカ Qobs(m3 s-1) Qcal(m3 s-1) (<) (<) () () () () () () () () () (ポイントテータ 道徳によデータ 構成したデータ 「回知」) 「(本回由) 「(本回由) 「(本回由) 「(本回由) 「(本回由)」 」(本回由)」 」(本回由)」 」(本回由)」 」(本回由)」 」(本回由)」 」(本回由)」 」(本回由) 」(本回由)」 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由) 」(本回由)
	(Interpret ()

データの選択を終了すると次のグラフが表示されます. iRIC の標準機能を使い,表示する軸や 線種等を修正することができます.

下図で示した実績流量(Qobs)と計算流量(Qcal)を比較すると、計算流量は良好に洪水ハイ ドログラフを再現していることがわかります.

iRICの標準機能(軸設定,描画設定)により,軸や線種等を指定します

7. 計算例 2-2 : 2 段タンク型貯留関数モデルのモデル定数の同定と流出計算

計算内容

以下に A 川 X 地点の流域平均雨量と実測流量が与えられています.これらのデータを用いて, 実測流量を最も精度良く再現し得る流出モデル定数を求め,求められた定数を用いた流出計算を 行います.

【時間雨量・流量表】

経過時間	時間雨量	流量	経過時間	時間雨量	流量
(h)	(mm/h)	(m^3/s)	(h)	(mm/h)	(m^3/s)
1	0.00	3.22	24	0.75	141.14
2	0.20	3.22	25	0.22	128.80
3	1.28	3.38	26	0.18	117.50
4	2.28	3.38	27	0.33	107.16
5	2.02	3.53	28	0.00	97.72
6	3.84	3.69	29	0.33	89.11
7	4.33	4.19	30	0.00	82.43
8	5.43	5.28	31	0.00	76.01
9	9.77	8.30	32	0.00	70.57
10	9.04	17.79	33	0.00	65.66
11	8.42	36.43	34	0.00	61.94
12	7.19	66.70	35	0.00	57.67
13	6.44	98.98	36	0.00	54.50
14	7.24	128.80	37	0.00	50.80
15	5.63	157.29	38	0.00	47.58
16	2.67	181.50	39	0.00	44.46
17	0.83	196.31	40	0.00	41.82
18	0.61	202.54	41	0.00	39.98
19	0.48	201.84	42	0.00	37.47
20	0.77	194.26	43	0.00	35.39
21	0.00	183.48	44	0.00	33.70
22	0.08	169.81	45	0.00	32.06
23	0.00	156.06			

計算条件

流域面積	234.1 km^2
計算モデル	2 段タンク型貯留関数モデル
モデル定数(初期値)	<i>c</i> ₁ =8.803, <i>c</i> ₂ =0.304, <i>c</i> ₃ =2.499 :北海道代表値
地下水分離時定数	T _c =61.7 :北海道代表值

作業手順

1) 雨量データファイルを作成します.

データファイルを右図に示します.1列目はデー タ番号,2列目は雨量データ,3列目は流量データ です.計算する時間数分だけ縦に並べます.雨量デ ータの単位は mm/h,流量データは m³/s です.デー タの区切りは,タブ,半角スペース,カンマ(,) のいずれかにして下さい.計算できる時間数の上限 は168 時間(7日)です.

ファイルを作成し、保存して下さい.

なお,雨量データは iRIC 上で入力することもで きます(次頁参照).ここでは,iRIC 以外のソフト ウェアを用いて作成したテキストデータをインポ ートする方法を説明します.

🚺 C:¥91_iRIC	¥2013062	0_3		x
ファイル(<u>E</u>)	編集(<u>E</u>)	検索(<u>5</u>)	表示(⊻)	د «
📄 👻 🆻 🖡	1 🕹 🖻	1 X D	-ע 🖇	-ル »
1→ 0→ 3.	22↓			
2→ 0.2→3.	22↓			=
3→ 1.28→	3.38↓			
4→ 2.28→	3.38↓			
5→ 2.02→	3.53↓			
6→ 3.84→	3.69↓			
7→ 4.33→	4.19↓			
8→ 5.43→	5.28↓			
9→ 9.77→	8.3↓			-
(Text 1行, 1桥	〕 日本語	(自動選択)	

雨量・流量データファイル

2) ソルバー「SRM」を起動します.

iRICを起動し、ソルバー「SRM」を起動します. 起動方法は第3章をご参照ください.

3) 計算条件を設定します.

メニューバーの「計算条件」-「設定」をクリックします.「計算条件」画面が表示されます.

Community (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(* ***********************************
計算条件	ソルパータイプの選択 遠出量の計算 ・
	計算モデルの選択 1199ンク型庁留開数モデル マ
	洪水名 Example 1
	計算(開始)(中心の)(定量(m3/c) (150// 小型時年6月開始)(デデルの宗教)
	モデル定数 c1 モデル定数 c2 モデル定数 c3 減聚係数 3
	12501 0.134 1.752 0.019
	248次ンク型理?留期間執モデルの定義
	モデル定数 c1 モデル定数 c2 モデル定数 c0 地下水分離時定数 Tc
	8803 0.304 2499 ft17
	入力ファイル(雨量デー約) 編集 入力ファイル(雨量:活量デー約)

ソルバー・タイプの選択で「モデル定数の最適化と流出量の計算」,計算モデルの選択で「1段 タンク型貯留関数モデル」を選択し,流域面積などの条件を「計算条件」画面で入力します.

次に,入力ファイル(雨量・流量データ)の「編集」ボタンをクリックし,「インポート」ボタンによってデータファイルを指定します.

以上の作業が終了したら「保存して閉じる」ボタンをクリックします. 以上で,計算条件の設定は終了です.

4) 計算を実行します.

メニューバーの「計算」-「実行」をクリックすると計算が開始されます.

			「実行」ボタ す.	ンをクリックしま
			7_	
IRIE = IRIC [SRM] - [プリプロセッサー]				
	計算	[(S) 計算結果 表	示(V) オプション(C) へレプ(H) - ≞ ×
📄 🔚 🙆 🍥 🔎 🍽 🍭 🖄 🕍 Yx Xr Xx 🖛 🌩 🛔 🎈 🔍 🔍		実行(R)	Ctrl+R	9
+ + X		停止(S)		
オブジェクトブラウザー ×		ソルバー情報(S)		
🔽 🗀 実測値				
	8	ソルバーログのエクスア	ポート(E)	
		_		
		X	: 1.8609650135	Y: 1.28815555573

計算が終了すると、次のメッセージが表示されます.

	D P P	17 15" Ye	· 元 · · · · · · · · · · · · · · · · · ·	▶ ■ / ■ 粉 令 粉 ビ ト
23,	0.00,	156.06,	157.65	
24,	0.75.	141.14,	142.76	
25,	0.22,	128.80,	128.00	
26,	0.18,	117.50,	116.09	
27,	0.33,	107.16,		
20,	0.00,	97.72,	篇 ソルバー将了 23	
29,	0.33,	89.11,		
30,	0.00,	82.43,	メルバーの計算が終了しました。	
31,	0.00,	76.01,	U	
32,	0.00,	70.57,		
33,	0.00,	65.66,		
34,	0.00,	#1.94,	- UN	
35,	0.00,	57.67,	the second se	
36,	0.00,	54.50,	02.07	
37,	0.00,	50.00,	50.37	
38,	0.00,	47.58,	48.51	
39,	0.00,	44.46,	46.93	
40,	0.00,	41.02,	42.64	
41,	0.00,	39.98,	44.53	
42,	0.00,	37.47.	43.58	

計算が終了すると次のソルバーコンソール画面が開き,計算条件と計算結果が表示されます.モデル定数などがソルバー「SRM」に正しく引き渡されたかを確認することができます.

Rest.ipro - iRIC [SRM] - [ソルパーコンソール [SRM] (停止)]	_ 0	x
■ ファイル(E) インポート(I) 計算(S) 計算結果(E 洪水名 (Q) ヘルプ(出)	-	8 ×
▷ 🖬 ◙ ۞ ") (" @, ∐ ﷺ L" ¥ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	🥕 🔳 🜆	*
Flood Name -> A river X point		^
Model> Two cascade strage routing model Area(km2)> 234.10 流出モデルタ		
Tc> 61.70		
<< Initial Parameters >>		
c1> 8.803 初期ハフメータ c2> 0.304		E
c3> 2.499		
<< Optimized Parameters >>		
c1> 7.204 取加バリメータ		
c3> 1.713		
<< Accuracy indexs >>		
Nash-Sutcliff efficiency> 0.995 誤差指標		
<< Result >>		
No, Robs (mm h-1), Qobs (m3 s-1), Qcal (m3 s-1)		
1, 0.00, 3.22, 3.21 2, 0.20, 3.22, 3.22 最適パラメー		
3, 1.28, 3.38, 3.33 タイト なんしい 11(1) (1) (1) (1) (1) (1) (1) (1) (1) (
5, 2.02, 3.53, 4.51 した流量		
6, 3.84, 3.69, 5.85 7, 4.33, 4.19, 8.19		
8, 5.43, 5.28, 11.99		
10, 9.04, 17.79, 30.16		-
┗━━━━━ 雨量 実測流量 計算流量 ━━━━━━━━		

5) iRIC の標準機能を用いて計算結果をグラフに表示します.

メニューバーの「計算結果」-「新しいグラフウィンドウを開く」をクリックすると、「データ ソース設定」画面が表示されます.

ファイル(F) インパート(I) 計算(S)	【計算結果(R)】表示(V) オプション(0) ヘルプ(H)	_ # ×
	脳 新しい可視化ウィンドウ(20)を聞く	· II / II II · ·
c1> 0.003	参 新しい 自助回可摂化ウィンドウ(2D)を整く	*
c2> 0.304 c3> 2.499	脳 新しい可視化ウィンドウ(3D)を聞く	
< Optimized Farameters >>	ビー新しいグラフウィンドウを開く	T
c1> 7.204	A REMELLER.	
c3> 1.713		
Accuracy indexs >>	9 #80/73/0/7(K)	
RMSE(m3 s-1)>	Mill(D)	-
Magn-Sutcliff efficiency>	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
No Robatem ball Cobated sall		
1, 0.00, 3.22	可損化・グラフ設定のインボート…	クリックします
2, 0.20, 3.22 3, 1.26, 3.38	可視化・グラフ設定のエクスポート…	
4, 2.28, 3.38		
6, 3.84, 3.69	, 5.85	
7, 4.33, 4.19	, 8.19 11.00	
		2 X
テーダリース設定		
ます具結果 外部 ポイントデータ	
す見給来 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)		5-9
す <u>見給</u> 業 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	違択した 注意力ロ >> (<< 肖印除 設定	17-5 1(5)
す見給米 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	道加 >> 道加 >> (< 肖印余)	.;
す見給業 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	道加>> 道加>> <<<< <p>何時 設定</p>	:データ :(5) OK キャンセル
す見給業 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	道加>> 道加>> (< 育印除	.; 9 (S) ΟΚ + +>>tz/L
<pre>#1 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年</pre>	道加 >> (《 肖珍帝 Bobs(mm h-1)(太雨	£7-9 ((5) ОК ₹+ү>/2/↓
す見給業 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	違加 >> 《 肖際	データ :データ :(5) OK キャンセル 量, Bi
す <u>見給</u> 業 外部 ポイントデータ Robs(mm h-1) Qobs(m3 s-1) Qcal(m3 s-1)	違択した 道加→> 《《肖明除 副定 Robs(mm h-1)(志雨 Qobs(m3 - 1)(古夷) Qobs(m3 - 1)(古夷)	データ (S) OK キャンセル 量. 別.

「データソース設定」画面において、グラフ化するデータを選択します. グラフに表示するデ ータ名を選択し「追加」ボタンをクリックします. 選択されたデータは「選択したデータ」枠内 に、そのデータ名が表示されます. ここでは、雨量「Robs(mm h-1)」と実測流量「Qobs(m-3 s-1)」 と計算流量「Qcal(m-3 s-1)」を選択しました. データの選択が終了したら「OK」ボタンをクリ ックします.

ten Barr
違訳したデータ
Robs(mm h-1)
Qobs(m3 s-1) Qcal(m3 s-1)
Rear Inc.

データの選択を終了すると次のグラフが表示されます. iRIC の標準機能を使い,表示する軸や 線種等を修正することができます.

下図で示した実績流量(Qobs)と計算流量(Qcal)を比較すると、計算流量は良好に洪水ハイ ドログラフを再現していることがわかります.

iRICの標準機能(軸設定,描画設定)により,軸や線種等を指定します

【ご利用にあたって】

- ・ 本ソフトウェアを使用した成果を用いて論文,報告書,記事等の出版物を作成する場合は, 本ソフトウェアを使用したことを適切な位置に示してください.
- ・ ご感想,ご意見,ご指摘は http://i-ric.org にて受け付けております.

編集・執筆者	中津川誠 (室蘭工業大学大学院工学研究科)	監修
	臼谷友秀(一般財団法人 日本気象協会 北海道支社)	執筆
	西原照雅(独立行政法人 土木研究所 寒地土木研究所)	執筆
協力	一般財団法人 北海道河川財団	