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1 Basic Equations of 2D Flow in (z,y) Co-

orthogonal Coordinate System
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Transformation into General (£,7) Coordinate System
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Contravariant components of the velocity in (£,7) coordinates are defines as
ué and u”

ut = Lu+Ep (21)
ul = ngu+nuu (22)
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2 Flow Equations in General Coordinate Sys-

tem
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in which,
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3 About the dimension of the valuables

Generally, ¢ and 7 are non-dimensional values, for example, ¢ and 7 can be
expressed in the computational domain as,

0<¢<1,  0<p<l (32)

Therefore, the dimensions of &,,&,,n, and 7, are [1/Length]|, and the di-
mensions of u¢ and u” are [1/Time]. The directions of u* and u” are &
and 7, respectively, but the magnitudes of them are not in ” Velocities” unit
[=Length/Time]. In order to describe them in ”Velocity” dimensions, trans-
formation is needed using local computational grid sizes.

Let us define that the "actual” local grid sizes as AE and A7, then the ratio
between the computational grid sizes A are An defines as follows.
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using these relationship, &, &, 7., 7, can be described as follows.
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The physical contravariant velocity components in ” Velocity” unit ¢ and %"
can be written as follows.
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4 Momentum Diffusion Terms

The following assumptions are made to simplify the momentum diffusion
terms.

(1) Second order derivatives with metric coefficients are negligible.

(2) Grids are treated quasi co-orthogonal locally.

Consequently, the diffusion terms are described as follows.
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in which the following relationship were used to lead the above equations.
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-+ = (17 +1,%) = 07 (sin 0 + cos? 0) = 7} (41)
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in which, € is an angle between = and &, or, y and 7 axes.

5 2-dimensional Continuity Equations for Bed-
load
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in which, z;, is bed elevation, ¢* and ¢ are bedload transport rate per unit
width in x and y directions, and A is void ratio of bed material.
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in which ¢¢ and ¢" are contravariant components of bedload sediment trans-
port rate in £ and 7 direction. They are also needed to be transformed as
follows to describe in actual sediment transport rate in [Length?/Time].
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6 Bed Shear Stress

(45)

Total velocity is defined as,
V =vu?+v? (46)
The total bed shear stress act on the channel bed, 7, is,
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in which, h is depth, I. is energy slope, s, specific relative weight, g is
gravitational acceleration, d is a diameter of bed material. When Manning’s
formula is applied for I., 7, becomes as follows.
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in which, n,, is Manning’s roughness coefficient. The total bedload in depth
averaged velocity direction, g, can be calculated by the following Ashida and
Michiue[1] formula.

g = 1773/? (1 - Z) [1 - 1/% /s,dg? (49)

Watanabe et al.[2] proposed the following equation considering the gravita-
tional effect in streamline and transverse directions.
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in which, ug and wu; are the velocity components at the bottom in & and 7
directions, V, is the total velocity at the bottom, 6 is an angle between &-
axis and n-axis. v is an adjustment coefficient for slope gravitational effect.
Hasegawal[3] proposed the following formula.
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in which, pus and py are static and kinetic friction coefficient of bed material.

7 Velocity components at channel bottom

The following simple relation is assumed between depth averaged flow veloc-
ities and bottom velocities. -
uy = BV (53)

in which, ﬁi is bottom velocity along the depth averaged stream line. En-
gelund[4] used a parabolic function for velocity profile in depth direction, and
proposed the following function.
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in which, ¢y is velocity coefficient(= V/u.), k Von Karman’s constant(=0.4).

When the stream line is curved, the secondary flow, or spiral flow is gen-
erated. The following equation is used to estimate the velocity components
considering secondarily flow.
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S
in which, &? is a bottom velocity perpendicular to the direction of stream
line, which is positive 90 degree clock wise direction from the stream line

direction, ry is a radius of curvature of the streamline, N, is a constant (=7,
Engelund[4]).



From Egs.(53) and (55) V; in Eqs.(50) and (51) can be expressed as,

Vi =vup +up ~ (56)

it is because the order of u is one order smaller than that of uj. u5 and 272
can be obtained by the following equations.
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in which, s and n are axes along the streamline and it’s orthogonal, and 6,
is an angle between x axis and stream line, in which, the following relations
are used.
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in which, T'= v/u, and
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Finally, the radius 1 / rs 1S express as,
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9 Procedure of the computation

2-d flow calculation(u®, u", u, v, h)

calculation of V' by Eq.(46)

calculation of 7, by Eq.(47).

calculation of ¢, by Eq.(49).

calculation of 4§ by Eq.(53).

alculation of 1/r; by Eq.(67).

alculation of u} by Eq.(55).

8) calculation of u$ and ] by Eqgs.(57) and (58).
calculation of ¢¢ and ¢7 by Eqs.(50) and (51).
) calculation of ¢¢ and ¢" by Eq.(45).

) calculation of z, by Eq.(43).
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