.. sectionauthor:: Yasuyuki SHIMIZU ########################################################### Appendix III (Diffusion equation in the s-n coordinates) ########################################################### .. _sn_diff: Derivation of the diffusion equation in the s-n coordinates ====================================================================== Let us assume that the :math:`s-n` coordinates are Cartesian curvilinear coordinates. On the :math:`s-n` coordinates, the :math:`s` axis is assumed to be an arbitrary curve, and the :math:`n` axis is assumed to be a straight coordinate axis perpendicular to the `s` axis. .. _dif_sn: .. figure:: images/0C/dif_sn.png :width: 80% : Density flux balance of the infinitesimal elements on the :math:`s-n` coordinates Assuming that the density of the diffusion material is :math:`c`, then the unit width flux and the diffusion coefficient in the :math:`s, n` direction are :math:`F_s, F_n` and :math:`D_s, D_n`, respectively. They have following relationships. .. math:: :label: sn_dif1 F_s=-D_s\cfrac{\partial F_s}{\partial s}, \hspace{2cm} F_n=-D_n\cfrac{\partial F_n}{\partial n} Considering the density balance of the infinitesimal elements in an infinitesimal time shown in :numref:`dif_sn` and taking into account that the area of the infinitesimal element is :math:`r\, \delta\theta\, \delta n`, then, the following equations are derived. .. math:: :label: sn_dif2 \cfrac{\partial c}{\partial t} r\, \delta\theta\, \delta n =F_{n(n)}r \delta\theta - F_{n(n+\delta n)} (r+\delta n) \delta\theta +F_{s(s)}\delta n -F_{s(s+\delta s)}\delta n .. math:: :label: sn_dif21 \cfrac{\partial c}{\partial t}=\cfrac{F_{n(n)}}{\delta n}-\cfrac{F_{n(n+\delta n)}\, (r+\delta n)}{r\delta n} +\cfrac{F_{s(s)}-F_{s(s+\delta s)}}{\delta s} Where, .. math:: :label: sn_dif3 \cfrac{(r+\delta n)}{r\delta n}=\cfrac{1}{r}+\cfrac{1}{\delta n} Therefore, the second term on the right side of Equation :eq:`sn_dif21` is... .. math:: :label: sn_dif4 \cfrac{F_{n(n+\delta n)}\, (r+\delta n)}{r\delta n}= \cfrac{F_{n(n+\delta n)}}{r}+\cfrac{F_{n(r+\delta n)}}{\delta n} Then, Equation :eq:`sn_dif21` is expressed as follows. .. math:: :label: sn_dif5 \cfrac{\partial c}{\partial t} & =\cfrac{F_{n(n)}}{\delta n}-\cfrac{F_{n(n+\delta n)}}{\delta n} -\cfrac{F_{n(n+\delta n)}}{r}+\cfrac{F_{s(s)}-F_{s(s+\delta s)}}{\delta s} & =-\cfrac{\partial F_n}{\partial n}-\cfrac{1}{r}F_{n(r+\delta n)}-\cfrac{\partial F_s}{\partial s} & =\cfrac{\partial}{\partial s}\left(D_s \cfrac{\partial c}{\partial s}\right) +\cfrac{\partial}{\partial n}\left(D_n\cfrac{\partial c}{\partial n}\right) +\cfrac{D_n}{r}\cfrac{\partial c}{\partial n} When :math:`D_s=D_n=D`, .. math:: :label: sn_dif6 \cfrac{\partial c}{\partial t}=D \left( \cfrac{\partial^2 c}{\partial s^2}+\cfrac{\partial^2 c}{\partial n^2}+ \cfrac{1}{r}\cfrac{\partial c}{\partial n} \right) .. _sn_con: Derivation of the equation of continuity on the s-n coordinates (alternative solution) ============================================================================================== Let us assume that the :math:`s-n` coordinates are Cartesian curvilinear coordinates. On the :math:`s-n` coordinates, the :math:`s` axis is assumed to be an arbitrary curve, and the :math:`n` axis is assumed to be a straight coordinate axis perpendicular to the `s` axis. .. _con_sn: .. figure:: images/0C/con_sn.png :width: 80% : Flux balance of the infinitesimal elements on the :math:`s-n` coordinates :math:`q_s, q_n` is the flow flux. Considering the flow flux balance of the infinitesimal elements in an infinitesimal time shown in :numref:`con_sn`, and taking into account that the area of the infinitesimal element is :math:`r\, \delta\theta\, \delta n`, following equations are derived. .. math:: :label: sn_con1 \cfrac{\partial h}{\partial t} r\, \delta\theta\, \delta n =q_{n(n)}r \delta\theta - q_{n(n+\delta n)} (r+\delta n) \delta\theta +q_{s(s)}\delta n -q_{s(s+\delta s)}\delta n .. math:: :label: sn_con2 \cfrac{\partial h}{\partial t}=\cfrac{q_{n(n)}}{\delta n}-\cfrac{q_{n(n+\delta n)}\, (r+\delta n)}{r\delta n} +\cfrac{q_{s(s)}-q_{s(s+\delta s)}}{\delta s} Where, :math:`h` is the mean water depth for the infinitesimal elements. Then, .. math:: :label: sn_con3 \cfrac{(r+\delta n)}{r\delta n}=\cfrac{1}{r}+\cfrac{1}{\delta n} Therefore, the second term of the right side of Equation :eq:`sn_con2` is... .. math:: :label: sn_con4 \cfrac{q_{n(n+\delta n)}\, (r+\delta n)}{r\delta n}= \cfrac{q_{n(n+\delta n)}}{r}+\cfrac{q_{n(r+\delta n)}}{\delta n} Then, Equation :eq:`sn_con2` is expressed as follows. .. math:: :label: sn_con5 \cfrac{\partial h}{\partial t} & =\cfrac{q_{n(n)}}{\delta n}-\cfrac{q_{n(n+\delta n)}}{\delta n} -\cfrac{q_{n(n+\delta n)}}{r}+\cfrac{q_{s(s)}-q_{s(s+\delta s)}}{\delta s} & =-\cfrac{\partial q_n}{\partial n}-\cfrac{1}{r}q_{n(r+\delta n)}-\cfrac{\partial q_s}{\partial s} Where, .. math:: :label: an_con6 \cfrac{\partial(rq_n)}{\partial n}=r\cfrac{\partial q_n}{\partial n}+q_n\cfrac{\partial r}{\partial n}=r\cfrac{\partial q_n}{\partial n}+q_n Consequently, .. math:: :label: an_con7 \cfrac{1}{r}\cfrac{\partial(rq_n)}{\partial n}=\cfrac{\partial q_n}{\partial n}+\cfrac{q_n}{r} Therefore, .. math:: :label: an_con8 \cfrac{\partial h}{\partial t}+\cfrac{\partial q_s}{\partial s}+\cfrac{1}{r}\cfrac{\partial(rq_n)}{\partial n}=0 or, .. math:: :label: an_con9 \cfrac{\partial h}{\partial t}+\cfrac{\partial(hu_s)}{\partial s}+\cfrac{1}{r}\cfrac{\partial(rhu_n)}{\partial n}=0