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1 Basic Equations of 2D Flow in (x, y) Co-

orthogonal Coordinate System

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0 (1)

∂(uh)

∂t
+

∂(hu2)

∂x
+

∂(huv)

∂y
= −hg

∂H

∂x
− τx

ρ
+Dx (2)

∂(vh)

∂t
+

∂(huv)

∂x
+

∂(hv2)

∂y
= −hg

∂H

∂y
− τy

ρ
+Dy (3)

in which,

τx
ρ

= Cdu
√
u2 + v2

τy
ρ

= Cdv
√
u2 + v2 (4)

Dx =
∂

∂x

[
νt
∂(uh)

∂x

]
+

∂

∂y

[
νt
∂(uh)

∂y

]
(5)

Dy =
∂

∂x

[
νt
∂(vh)

∂x

]
+

∂

∂y

[
νt
∂(vh)

∂y

]
(6)

Transformation into General (ξ, η) Coordinate System

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
(7)

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+

∂η

∂y

∂

∂η
(8)
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or, 
∂

∂x

∂

∂y

 =

 ξx ηx

ξy ηy




∂

∂ξ

∂

∂η

 (9)

in which,

ξx =
∂ξ

∂x
, ξy =

∂ξ

∂y
, ηx =

∂η

∂x
, ηy =

∂η

∂y
(10)

In the same manner,

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+

∂y

∂ξ

∂

∂y
(11)

∂

∂η
=

∂x

∂η

∂

∂x
+

∂y

∂η

∂

∂y
(12)

or, 
∂

∂ξ

∂

∂η

 =

 xξ yξ

xη yη




∂

∂x

∂

∂y

 (13)

in which,

xξ =
∂x

∂ξ
, xη =

∂x

∂η
, yξ =

∂y

∂ξ
, yη =

∂y

∂η
(14)

Therefore,
∂

∂ξ

∂

∂η

 =
1

ξxηy − ξyηx

 ηy −ηx

−ξy ξx




∂

∂x

∂

∂y

 =

 xξ yξ

xη yη




∂

∂x

∂

∂y


(15)

in which, J = ξxηy − ξyηx

1

J

(
ηy −ηx
−ξy ξx

)
=

(
xξ yξ
xη yη

)
(16)

xξ =
1

J
ηy, yξ = − 1

J
ηx, xη = − 1

J
ξy, yη =

1

J
ξx (17)
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or,
ηy = Jxξ, ηx = −Jyξ, ξy = −Jxη, ξx = Jyη (18)

J = ξxηy − ξyηx = J2(xξyη − xηyξ) (19)

J =
1

xξyη − xηyξ
(20)

Contravariant components of the velocity in (ξ, η) coordinates are defines as
uξ and uη

uξ = ξxu+ ξyv (21)

uη = ηxu+ ηyv (22)

or, (
uξ

uη

)
=

(
ξx ξy
ηx ηy

)(
u
v

)
(23)

(
u
v

)
=

1

J

(
ηy −ξy
−ηx ξx

)(
uξ

uη

)
(24)

2 Flow Equations in General Coordinate Sys-

tem

∂

∂t

(
h

J

)
+

∂

∂ξ

(
huξ

J

)
+

∂

∂η

(
huη

J

)
= 0 (25)

∂uξ

∂t
+ uξ ∂u

ξ

∂ξ
+ uη ∂u

ξ

∂η
+ α1u

ξuξ + α2u
ξuη + α3u

ηuη =

−g

[
(ξ2x + ξ2y)

∂H

∂ξ
+ (ξxηx + ξyηy)

∂H

∂η

]

−Cdu
ξ

hJ

√
(ηyuξ − ξyuη)2 + (−ηxuξ + ξxuη)2 +Dξ (26)

∂uη

∂t
+ uξ ∂u

η

∂ξ
+ uη ∂u

η

∂η
+ α4u

ξuξ + α5u
ξuη + α6u

ηuη =

−g

[
(ηxξx + ηyξy)

∂H

∂ξ
+ (η2x + η2y)

∂H

∂η

]

−Cdu
η

hJ

√
(ηyuξ − ξyuη)2 + (−ηxuξ + ξxuη)2 +Dη (27)
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in which,

α1 = ξx
∂2x

∂ξ2
+ ξy

∂2y

∂ξ2
, α2 = 2

(
ξx

∂2x

∂ξ∂η
+ ξy

∂2y

∂ξ∂η

)
, α3 = ξx

∂2x

∂η2
+ ξy

∂2y

∂η2

(28)

α4 = ηx
∂2x

∂ξ2
+ηy

∂2y

∂ξ2
, α5 = 2

(
ηx

∂2x

∂ξ∂η
+ ηy

∂2y

∂ξ∂η

)
, α6 = ηx

∂2x

∂η2
+ηy

∂2y

∂η2

(29)
Dξ =(
ξx

∂

∂ξ
+ ηx

∂

∂η

)[
νt

(
ξx
∂uξ

∂ξ
+ ηx

∂uξ

∂η

)]
+

(
ξy

∂

∂ξ
+ ηy

∂

∂η

)[
νt

(
ξy
∂uξ

∂ξ
+ ηy

∂uξ

∂η

)]
(30)

Dη =(
ξx

∂

∂ξ
+ ηx

∂

∂η

)[
νt

(
ξx
∂uη

∂ξ
+ ηx

∂uη

∂η

)]
+

(
ξy

∂

∂ξ
+ ηy

∂

∂η

)[
νt

(
ξy
∂uη

∂ξ
+ ηy

∂uη

∂η

)]
(31)

3 About the dimension of the valuables

Generally, ξ and η are non-dimensional values, for example, ξ and η can be
expressed in the computational domain as,

0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 (32)

Therefore, the dimensions of ξx, ξy, ηx and ηy are [1/Length], and the di-
mensions of uξ and uη are [1/Time]. The directions of uξ and uη are ξ
and η, respectively, but the magnitudes of them are not in ”Velocities” unit
[=Length/Time]. In order to describe them in ”Velocity” dimensions, trans-
formation is needed using local computational grid sizes.
Let us define that the ”actual” local grid sizes as ∆ξ̃ and ∆η̃, then the ratio
between the computational grid sizes ∆ξ are ∆η defines as follows.

∆ξ

∆ξ̃
= ξr,

∆η

∆η̃
= ηr (33)

using these relationship, ξx, ξy, ηx, ηy can be described as follows.

ξx =
∂ξ

∂x
= ξr

∂ξ̃

∂x
= ξrξ̃x, ξy =

∂ξ

∂y
= ξr

∂ξ̃

∂y
= ξrξ̃y (34)
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ηx =
∂η

∂x
= ηr

∂η̃

∂x
= ηrη̃x, ηy =

∂η

∂y
= ηr

∂η̃

∂y
= ηrη̃y (35)

The physical contravariant velocity components in ”Velocity” unit ũξ and ũη

can be written as follows.

ũξ = ξ̃xu+ ξ̃yv =
uξ

ξr
, ũη = η̃xu+ η̃yv =

uη

ηr
(36)

4 Momentum Diffusion Terms

The following assumptions are made to simplify the momentum diffusion
terms.
(1) Second order derivatives with metric coefficients are negligible.
(2) Grids are treated quasi co-orthogonal locally.
Consequently, the diffusion terms are described as follows.

Dξ ≃ ∂

∂ξ

(
νtξ

2
r

∂uξ

∂ξ

)
+

∂

∂η

(
νtη

2
r

∂uξ

∂η

)
(37)

Dη ≃ ∂

∂ξ

(
νtξ

2
r

∂uη

∂ξ

)
+

∂

∂η

(
νtη

2
r

∂uη

∂η

)
(38)

in which the following relationship were used to lead the above equations.

ξ2x + ξ2y = ξ2r (ξ̃x
2
+ ξ̃y

2
) = ξ2r (sin

2 θ + cos2 θ) = ξ2r (39)

ξxηx + ξyηy = ξrηr(ξ̃xη̃x + ξ̃yη̃y) = ξrηr(− cos θ sin θ + cos θ sin θ) = 0 (40)

η2x + η2y = η2r(η̃x
2 + η̃y

2) = η2r(sin
2 θ + cos2 θ) = η2r (41)

J = ξxηy − ξyηx = ξrηr(ξ̃xη̃y − ξ̃yη̃x) = ξrηr(sin
2 θ + cos2 sin θ) = ξrηr (42)

in which, θ is an angle between x and ξ, or, y and η axes.

5 2-dimensional Continuity Equations for Bed-

load

∂zb
∂t

+
1

1− λ

[
∂qx

∂x
+

∂qy

∂y

]
= 0 (43)
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in which, zb is bed elevation, qx and qy are bedload transport rate per unit
width in x and y directions, and λ is void ratio of bed material.

∂

∂t

(
zb
J

)
+

1

1− λ

[
∂

∂ξ

(
qξ

J

)
+

∂

∂η

(
qη

J

)]
= 0 (44)

in which qξ and qη are contravariant components of bedload sediment trans-
port rate in ξ and η direction. They are also needed to be transformed as
follows to describe in actual sediment transport rate in [Length2/Time].

q̃ξ =
qξ

ξr
, q̃η =

qη

ηr
(45)

6 Bed Shear Stress

Total velocity is defined as,

V =
√
u2 + v2 (46)

The total bed shear stress act on the channel bed, τ∗ is,

τ∗ =
hIe
sgd

(47)

in which, h is depth, Ie is energy slope, sg specific relative weight, g is
gravitational acceleration, d is a diameter of bed material. When Manning’s
formula is applied for Ie, τ∗ becomes as follows.

τ∗ =
CdV

2

sggd
=

n2
mV

2

sgdh1/3
(48)

in which, nm is Manning’s roughness coefficient. The total bedload in depth
averaged velocity direction, qb can be calculated by the following Ashida and
Michiue[1] formula.

qb = 17τ 3/2∗

(
1− τ∗c

τ∗

) [
1−

√
τ∗c
τ∗

]√
sgdg3 (49)

Watanabe et al.[2] proposed the following equation considering the gravita-
tional effect in streamline and transverse directions.

q̃ξ = qb

 ũξ
b

Vb

− γ

(
∂zb

∂ξ̃
+ cos θ

∂zb
∂η̃

) (50)
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q̃η = qb

 ũη
b

Vb

− γ

(
∂zb
∂η̃

+ cos θ
∂zb

∂ξ̃

) (51)

in which, ũξ
b and ũη

b are the velocity components at the bottom in ξ and η
directions, Vb is the total velocity at the bottom, θ is an angle between ξ-
axis and η-axis. γ is an adjustment coefficient for slope gravitational effect.
Hasegawa[3] proposed the following formula.

γ =

√
τ∗c

µsµkτ∗
(52)

in which, µs and µk are static and kinetic friction coefficient of bed material.

7 Velocity components at channel bottom

The following simple relation is assumed between depth averaged flow veloc-
ities and bottom velocities.

ũs
b = βV (53)

in which, ũs
b is bottom velocity along the depth averaged stream line. En-

gelund[4] used a parabolic function for velocity profile in depth direction, and
proposed the following function.

β = 3(1− σ)(3− σ), σ =
3

ϕ0κ+ 1
(54)

in which, ϕ0 is velocity coefficient(= V/u∗), κ Von Karman’s constant(=0.4).
When the stream line is curved, the secondary flow, or spiral flow is gen-

erated. The following equation is used to estimate the velocity components
considering secondarily flow.

ũn
b = ũs

bN∗
h

rs
(55)

in which, ũn
b is a bottom velocity perpendicular to the direction of stream

line, which is positive 90 degree clock wise direction from the stream line
direction, rs is a radius of curvature of the streamline, N∗ is a constant (=7,
Engelund[4]).
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From Eqs.(53) and (55) Vb in Eqs.(50) and (51) can be expressed as,

Vb =
√
ũs
b

2
+ ũn

b

2 ≈ ũs
b (56)

it is because the order of ũn
b is one order smaller than that of ũs

b. ũ
ξ
b and ũη

b

can be obtained by the following equations.

ũξ
b =

∂ξ̃

∂s
ũs
b +

∂ξ̃

∂n
ũn
b =

(
∂x

∂s

∂ξ̃

∂x
+

∂y

∂s

∂ξ̃

∂y

)
ũs
b +

(
∂x

∂n

∂ξ̃

∂x
+

∂y

∂n

∂ξ̃

∂y

)
ũn
b

=
(
cos θsξ̃x + sin θsξ̃y

)
ũs
b +

(
− sin θsξ̃x + cos θsξ̃y

)
ũn
b

=
1

ξr

{
(cos θsξx + sin θsξy) ũs

b + (− sin θsξx + cos θsξy) ũn
b

}
(57)

ũη
b =

∂η̃

∂s
ũs
b +

∂η̃

∂n
ũn
b =

(
∂x

∂s

∂η̃

∂x
+

∂y

∂s

∂η̃

∂y

)
ũs
b +

(
∂x

∂n

∂η̃

∂x
+

∂y

∂n

∂η̃

∂y

)
ũn
b

= (cos θsη̃x + sin θsη̃y) ũs
b + (− sin θsη̃x + cos θsη̃y) ũn

b

=
1

ηr

{
(cos θsηx + sin θsηy) ũs

b + (− sin θsηx + cos θsηy) ũn
b

}
(58)

in which, s and n are axes along the streamline and it’s orthogonal, and θs
is an angle between x axis and stream line, in which, the following relations
are used.

∂x

∂n
= − v

V
= − sin θs,

∂y

∂n
=

u

V
= cos θs (59)

∂x

∂s
=

u

V
= cos θs,

∂y

∂s
=

v

V
= sin θs (60)

8 Streamline curvature
1

rs
=

∂θs
∂s

(61)

θs = tan−1
(
v

u

)
(62)

1

rs
=

∂

∂s

[
tan−1(T )

]
=

∂

∂T

[
tan−1(T )

] ∂T
∂s

=
1

1 + T 2

∂T

∂s
(63)
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in which, T = v/u, and

1

1 + T 2
=

1

1 +
(
v

u

)2 =
u2

u2 + v2
=

u2

V 2
(64)

∂T

∂s
=

∂

∂s

(
v

u

)
=

u
∂v

∂s
− v

∂u

∂s
u2

(65)

∂

∂s
=

∂x

∂s

∂

∂x
+

∂y

∂s

∂

∂y
=

u

V

∂

∂x
+

v

V

∂

∂y

=
u

V

(
ξx

∂

∂ξ
+ ηx

∂

∂η

)
+

v

V

(
ξy

∂

∂ξ
+ ηy

∂

∂η

)
(66)

Finally, the radius 1/rs is express as,

1

rs
=

1

V 3

[
u2

(
ξx
∂v

∂ξ
+ ηx

∂v

∂η

)
+ uv

(
ξy
∂v

∂ξ
+ ηy

∂v

∂η

)

−uv

(
ξx
∂u

∂ξ
+ ηx

∂u

∂η

)
− v2

(
ξy
∂u

∂ξ
+ ηy

∂u

∂η

)]
(67)

9 Procedure of the computation

(1) 2-d flow calculation(uξ, uη, u, v, h)
(2) calculation of V by Eq.(46)
(3) calculation of τ∗ by Eq.(47).
(4) calculation of qb by Eq.(49).
(5) calculation of ũs

b by Eq.(53).
(6) calculation of 1/rs by Eq.(67).
(7) calculation of ũn

b by Eq.(55).

(8) calculation of ũξ
b and ũη

b by Eqs.(57) and (58).

(9) calculation of q̃ξ and q̃η by Eqs.(50) and (51).
(10) calculation of qξ and qη by Eq.(45).
(11) calculation of zb by Eq.(43).
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