Equations of two-dimensional flow and bed deformation in general coordinate system

Yasuyuki Shimizu

June 25, 2015

1 Basic Equations of 2D Flow in (x, y) Coorthogonal Coordinate System

$$
\begin{gather*}
\frac{\partial h}{\partial t}+\frac{\partial(h u)}{\partial x}+\frac{\partial(h v)}{\partial y}=0 \tag{1}\\
\frac{\partial(u h)}{\partial t}+\frac{\partial\left(h u^{2}\right)}{\partial x}+\frac{\partial(h u v)}{\partial y}=-h g \frac{\partial H}{\partial x}-\frac{\tau_{x}}{\rho}+D^{x} \tag{2}\\
\frac{\partial(v h)}{\partial t}+\frac{\partial(h u v)}{\partial x}+\frac{\partial\left(h v^{2}\right)}{\partial y}=-h g \frac{\partial H}{\partial y}-\frac{\tau_{y}}{\rho}+D^{y} \tag{3}
\end{gather*}
$$

in which,

$$
\begin{gather*}
\frac{\tau_{x}}{\rho}=C_{d} u \sqrt{u^{2}+v^{2}} \quad \frac{\tau_{y}}{\rho}=C_{d} v \sqrt{u^{2}+v^{2}} \tag{4}\\
D^{x}=\frac{\partial}{\partial x}\left[\nu_{t} \frac{\partial(u h)}{\partial x}\right]+\frac{\partial}{\partial y}\left[\nu_{t} \frac{\partial(u h)}{\partial y}\right] \tag{5}\\
D^{y}=\frac{\partial}{\partial x}\left[\nu_{t} \frac{\partial(v h)}{\partial x}\right]+\frac{\partial}{\partial y}\left[\nu_{t} \frac{\partial(v h)}{\partial y}\right] \tag{6}
\end{gather*}
$$

Transformation into General (ξ, η) Coordinate System

$$
\begin{align*}
\frac{\partial}{\partial x} & =\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial x} \frac{\partial}{\partial \eta} \tag{7}\\
\frac{\partial}{\partial y} & =\frac{\partial \xi}{\partial y} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta} \tag{8}
\end{align*}
$$

or,

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}=\left(\begin{array}{cc}
\xi_{x} & \eta_{x} \tag{9}\\
\xi_{y} & \eta_{y}
\end{array}\right)\binom{\frac{\partial}{\partial \xi}}{\frac{\partial}{\partial \eta}}
$$

in which,

$$
\begin{equation*}
\xi_{x}=\frac{\partial \xi}{\partial x}, \quad \xi_{y}=\frac{\partial \xi}{\partial y}, \quad \eta_{x}=\frac{\partial \eta}{\partial x}, \quad \eta_{y}=\frac{\partial \eta}{\partial y} \tag{10}
\end{equation*}
$$

In the same manner,

$$
\begin{align*}
\frac{\partial}{\partial \xi} & =\frac{\partial x}{\partial \xi} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \xi} \frac{\partial}{\partial y} \tag{11}\\
\frac{\partial}{\partial \eta} & =\frac{\partial x}{\partial \eta} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \eta} \frac{\partial}{\partial y} \tag{12}
\end{align*}
$$

or,

$$
\binom{\frac{\partial}{\partial \xi}}{\frac{\partial}{\partial \eta}}=\left(\begin{array}{ll}
x_{\xi} & y_{\xi} \tag{13}\\
x_{\eta} & y_{\eta}
\end{array}\right)\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}
$$

in which,

$$
\begin{equation*}
x_{\xi}=\frac{\partial x}{\partial \xi}, \quad x_{\eta}=\frac{\partial x}{\partial \eta}, \quad y_{\xi}=\frac{\partial y}{\partial \xi}, \quad y_{\eta}=\frac{\partial y}{\partial \eta} \tag{14}
\end{equation*}
$$

Therefore,

$$
\binom{\frac{\partial}{\partial \xi}}{\frac{\partial}{\partial \eta}}=\frac{1}{\xi_{x} \eta_{y}-\xi_{y} \eta_{x}}\left(\begin{array}{cc}
\eta_{y} & -\eta_{x} \tag{15}\\
-\xi_{y} & \xi_{x}
\end{array}\right)\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}=\left(\begin{array}{cc}
x_{\xi} & y_{\xi} \\
x_{\eta} & y_{\eta}
\end{array}\right)\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}
$$

in which, $J=\xi_{x} \eta_{y}-\xi_{y} \eta_{x}$

$$
\begin{gather*}
\frac{1}{J}\left(\begin{array}{cc}
\eta_{y} & -\eta_{x} \\
-\xi_{y} & \xi_{x}
\end{array}\right)=\left(\begin{array}{cc}
x_{\xi} & y_{\xi} \\
x_{\eta} & y_{\eta}
\end{array}\right) \tag{16}\\
x_{\xi}=\frac{1}{J} \eta_{y}, \quad y_{\xi}=-\frac{1}{J} \eta_{x}, \quad x_{\eta}=-\frac{1}{J} \xi_{y}, \quad y_{\eta}=\frac{1}{J} \xi_{x} \tag{17}
\end{gather*}
$$

or,

$$
\begin{gather*}
\eta_{y}=J x_{\xi}, \quad \eta_{x}=-J y_{\xi}, \quad \xi_{y}=-J x_{\eta}, \quad \xi_{x}=J y_{\eta} \tag{18}\\
J=\xi_{x} \eta_{y}-\xi_{y} \eta_{x}=J^{2}\left(x_{\xi} y_{\eta}-x_{\eta} y_{\xi}\right) \tag{19}\\
J=\frac{1}{x_{\xi} y_{\eta}-x_{\eta} y_{\xi}} \tag{20}
\end{gather*}
$$

Contravariant components of the velocity in (ξ, η) coordinates are defines as u^{ξ} and u^{η}

$$
\begin{align*}
u^{\xi} & =\xi_{x} u+\xi_{y} v \tag{21}\\
u^{\eta} & =\eta_{x} u+\eta_{y} v \tag{22}
\end{align*}
$$

or,

$$
\begin{gather*}
\binom{u^{\xi}}{u^{\eta}}=\left(\begin{array}{cc}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)\binom{u}{v} \tag{23}\\
\binom{u}{v}=\frac{1}{J}\left(\begin{array}{cc}
\eta_{y} & -\xi_{y} \\
-\eta_{x} & \xi_{x}
\end{array}\right)\binom{u^{\xi}}{u^{\eta}} \tag{24}
\end{gather*}
$$

2 Flow Equations in General Coordinate System

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(\frac{h}{J}\right)+\frac{\partial}{\partial \xi}\left(\frac{h u^{\xi}}{J}\right)+\frac{\partial}{\partial \eta}\left(\frac{h u^{\eta}}{J}\right)=0 \tag{25}\\
\frac{\partial u^{\xi}}{\partial t}+u^{\xi} \frac{\partial u^{\xi}}{\partial \xi}+u^{\eta} \frac{\partial u^{\xi}}{\partial \eta}+\alpha_{1} u^{\xi} u^{\xi}+\alpha_{2} u^{\xi} u^{\eta}+\alpha_{3} u^{\eta} u^{\eta}= \\
-g\left[\left(\xi_{x}^{2}+\xi_{y}^{2}\right) \frac{\partial H}{\partial \xi}+\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) \frac{\partial H}{\partial \eta}\right] \\
-\frac{C_{d} u^{\xi}}{h J} \sqrt{\left(\eta_{y} u^{\xi}-\xi_{y} u^{\eta}\right)^{2}+\left(-\eta_{x} u^{\xi}+\xi_{x} u^{\eta}\right)^{2}}+D^{\xi} \tag{26}\\
\frac{\partial u^{\eta}}{\partial t}+u^{\xi} \frac{\partial u^{\eta}}{\partial \xi}+u^{\eta} \frac{\partial u^{\eta}}{\partial \eta}+\alpha_{4} u^{\xi} u^{\xi}+\alpha_{5} u^{\xi} u^{\eta}+\alpha_{6} u^{\eta} u^{\eta}= \\
-g\left[\left(\eta_{x} \xi_{x}+\eta_{y} \xi_{y}\right) \frac{\partial H}{\partial \xi}+\left(\eta_{x}^{2}+\eta_{y}^{2}\right) \frac{\partial H}{\partial \eta}\right] \\
-\frac{C_{d} u^{\eta}}{h J} \sqrt{\left(\eta_{y} u^{\xi}-\xi_{y} u^{\eta}\right)^{2}+\left(-\eta_{x} u^{\xi}+\xi_{x} u^{\eta}\right)^{2}}+D^{\eta} \tag{27}
\end{gather*}
$$

in which,

$$
\begin{align*}
& \alpha_{1}=\xi_{x} \frac{\partial^{2} x}{\partial \xi^{2}}+\xi_{y} \frac{\partial^{2} y}{\partial \xi^{2}}, \quad \alpha_{2}=2\left(\xi_{x} \frac{\partial^{2} x}{\partial \xi \partial \eta}+\xi_{y} \frac{\partial^{2} y}{\partial \xi \partial \eta}\right), \quad \alpha_{3}=\xi_{x} \frac{\partial^{2} x}{\partial \eta^{2}}+\xi_{y} \frac{\partial^{2} y}{\partial \eta^{2}} \\
& \alpha_{4}=\eta_{x} \frac{\partial^{2} x}{\partial \xi^{2}}+\eta_{y} \frac{\partial^{2} y}{\partial \xi^{2}}, \quad \alpha_{5}=2\left(\eta_{x} \frac{\partial^{2} x}{\partial \xi \partial \eta}+\eta_{y} \frac{\partial^{2} y}{\partial \xi \partial \eta}\right), \quad \alpha_{6}=\eta_{x} \frac{\partial^{2} x}{\partial \eta^{2}}+\eta_{y} \frac{\partial^{2} y}{\partial \eta^{2}} \\
& D^{\xi}= \\
& \left(\xi_{x} \frac{\partial}{\partial \xi}+\eta_{x} \frac{\partial}{\partial \eta}\right)\left[\nu_{t}\left(\xi_{x} \frac{\partial u^{\xi}}{\partial \xi}+\eta_{x} \frac{\partial u^{\xi}}{\partial \eta}\right)\right]+\left(\xi_{y} \frac{\partial}{\partial \xi}+\eta_{y} \frac{\partial}{\partial \eta}\right)\left[\nu_{t}\left(\xi_{y} \frac{\partial u^{\xi}}{\partial \xi}+\eta_{y} \frac{\partial u^{\xi}}{\partial \eta}\right)\right] \tag{30}\\
& (30) \\
& D^{\eta}= \tag{31}\\
& \left(\xi_{x} \frac{\partial}{\partial \xi}+\eta_{x} \frac{\partial}{\partial \eta}\right)\left[\nu_{t}\left(\xi_{x} \frac{\partial u^{\eta}}{\partial \xi}+\eta_{x} \frac{\partial u^{\eta}}{\partial \eta}\right)\right]+\left(\xi_{y} \frac{\partial}{\partial \xi}+\eta_{y} \frac{\partial}{\partial \eta}\right)\left[\nu_{t}\left(\xi_{y} \frac{\partial u^{\eta}}{\partial \xi}+\eta_{y} \frac{\partial u^{\eta}}{\partial \eta}\right)\right]
\end{align*}
$$

3 About the dimension of the valuables

Generally, ξ and η are non-dimensional values, for example, ξ and η can be expressed in the computational domain as,

$$
\begin{equation*}
0 \leq \xi \leq 1, \quad 0 \leq \eta \leq 1 \tag{32}
\end{equation*}
$$

Therefore, the dimensions of $\xi_{x}, \xi_{y}, \eta_{x}$ and η_{y} are [$1 /$ Length], and the dimensions of u^{ξ} and u^{η} are [$1 /$ Time]. The directions of u^{ξ} and u^{η} are ξ and η, respectively, but the magnitudes of them are not in "Velocities" unit [=Length/Time]. In order to describe them in "Velocity" dimensions, transformation is needed using local computational grid sizes.
Let us define that the "actual" local grid sizes as $\Delta \widetilde{\xi}$ and $\Delta \widetilde{\eta}$, then the ratio between the computational grid sizes $\Delta \xi$ are $\Delta \eta$ defines as follows.

$$
\begin{equation*}
\frac{\Delta \xi}{\Delta \tilde{\xi}}=\xi_{r}, \quad \frac{\Delta \eta}{\Delta \tilde{\eta}}=\eta_{r} \tag{33}
\end{equation*}
$$

using these relationship, $\xi_{x}, \xi_{y}, \eta_{x}, \eta_{y}$ can be described as follows.

$$
\begin{equation*}
\xi_{x}=\frac{\partial \xi}{\partial x}=\xi_{r} \frac{\partial \tilde{\xi}}{\partial x}=\xi_{r} \tilde{\xi}_{x}, \quad \xi_{y}=\frac{\partial \xi}{\partial y}=\xi_{r} \frac{\partial \tilde{\xi}}{\partial y}=\xi_{r} \tilde{\xi}_{y} \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{x}=\frac{\partial \eta}{\partial x}=\eta_{r} \frac{\partial \widetilde{\eta}}{\partial x}=\eta_{r} \widetilde{\eta}_{x}, \quad \eta_{y}=\frac{\partial \eta}{\partial y}=\eta_{r} \frac{\partial \widetilde{\eta}}{\partial y}=\eta_{r} \widetilde{\eta}_{y} \tag{35}
\end{equation*}
$$

The physical contravariant velocity components in "Velocity" unit \widetilde{u}^{ξ} and \widetilde{u}^{η} can be written as follows.

$$
\begin{equation*}
\widetilde{u}^{\xi}=\widetilde{\xi}_{x} u+\widetilde{\xi}_{y} v=\frac{u^{\xi}}{\xi_{r}}, \quad \widetilde{u}^{\eta}=\widetilde{\eta}_{x} u+\widetilde{\eta}_{y} v=\frac{u^{\eta}}{\eta_{r}} \tag{36}
\end{equation*}
$$

4 Momentum Diffusion Terms

The following assumptions are made to simplify the momentum diffusion terms.
(1) Second order derivatives with metric coefficients are negligible.
(2) Grids are treated quasi co-orthogonal locally.

Consequently, the diffusion terms are described as follows.

$$
\begin{align*}
D^{\xi} & \simeq \frac{\partial}{\partial \xi}\left(\nu_{t} \xi_{r}^{2} \frac{\partial u^{\xi}}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\nu_{t} \eta_{r}^{2} \frac{\partial u^{\xi}}{\partial \eta}\right) \tag{37}\\
D^{\eta} & \simeq \frac{\partial}{\partial \xi}\left(\nu_{t} \xi_{r}^{2} \frac{\partial u^{\eta}}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\nu_{t} \eta_{r}^{2} \frac{\partial u^{\eta}}{\partial \eta}\right) \tag{38}
\end{align*}
$$

in which the following relationship were used to lead the above equations.

$$
\begin{gather*}
\xi_{x}^{2}+\xi_{y}^{2}=\xi_{r}^{2}\left(\widetilde{\xi}_{x}^{2}+\widetilde{\xi}_{y}^{2}\right)=\xi_{r}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\xi_{r}^{2} \tag{39}\\
\xi_{x} \eta_{x}+\xi_{y} \eta_{y}=\xi_{r} \eta_{r}\left(\widetilde{\xi_{x}} \widetilde{\eta}_{x}+\widetilde{\xi_{y}} \widetilde{\eta}_{y}\right)=\xi_{r} \eta_{r}(-\cos \theta \sin \theta+\cos \theta \sin \theta)=0 \tag{40}\\
\eta_{x}^{2}+\eta_{y}^{2}=\eta_{r}^{2}\left({\widetilde{\eta_{x}}}^{2}+\widetilde{\eta}_{y}^{2}\right)=\eta_{r}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\eta_{r}^{2} \tag{41}\\
J=\xi_{x} \eta_{y}-\xi_{y} \eta_{x}=\xi_{r} \eta_{r}\left(\widetilde{\xi_{x}} \widetilde{\eta_{y}}-\widetilde{\xi_{y} \eta_{x}}\right)=\xi_{r} \eta_{r}\left(\sin ^{2} \theta+\cos ^{2} \sin \theta\right)=\xi_{r} \eta_{r} \tag{42}
\end{gather*}
$$

in which, θ is an angle between x and ξ, or, y and η axes.

5 2-dimensional Continuity Equations for Bedload

$$
\begin{equation*}
\frac{\partial z_{b}}{\partial t}+\frac{1}{1-\lambda}\left[\frac{\partial q^{x}}{\partial x}+\frac{\partial q^{y}}{\partial y}\right]=0 \tag{43}
\end{equation*}
$$

in which, z_{b} is bed elevation, q^{x} and q^{y} are bedload transport rate per unit width in x and y directions, and λ is void ratio of bed material.

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{z_{b}}{J}\right)+\frac{1}{1-\lambda}\left[\frac{\partial}{\partial \xi}\left(\frac{q^{\xi}}{J}\right)+\frac{\partial}{\partial \eta}\left(\frac{q^{\eta}}{J}\right)\right]=0 \tag{44}
\end{equation*}
$$

in which q^{ξ} and q^{η} are contravariant components of bedload sediment transport rate in ξ and η direction. They are also needed to be transformed as follows to describe in actual sediment transport rate in [Length ${ }^{2} /$ Time].

$$
\begin{equation*}
\widetilde{q^{\xi}}=\frac{q^{\xi}}{\xi_{r}}, \quad \widetilde{q^{\eta}}=\frac{q^{\eta}}{\eta_{r}} \tag{45}
\end{equation*}
$$

6 Bed Shear Stress

Total velocity is defined as,

$$
\begin{equation*}
V=\sqrt{u^{2}+v^{2}} \tag{46}
\end{equation*}
$$

The total bed shear stress act on the channel bed, τ_{*} is,

$$
\begin{equation*}
\tau_{*}=\frac{h I_{e}}{s_{g} d} \tag{47}
\end{equation*}
$$

in which, h is depth, I_{e} is energy slope, s_{g} specific relative weight, g is gravitational acceleration, d is a diameter of bed material. When Manning's formula is applied for I_{e}, τ_{*} becomes as follows.

$$
\begin{equation*}
\tau_{*}=\frac{C_{d} V^{2}}{s_{g} g d}=\frac{n_{m}^{2} V^{2}}{s_{g} d h^{1 / 3}} \tag{48}
\end{equation*}
$$

in which, n_{m} is Manning's roughness coefficient. The total bedload in depth averaged velocity direction, q_{b} can be calculated by the following Ashida and Michiue[1] formula.

$$
\begin{equation*}
q_{b}=17 \tau_{*}^{3 / 2}\left(1-\frac{\tau_{* c}}{\tau_{*}}\right)\left[1-\sqrt{\frac{\tau_{* c}}{\tau_{*}}}\right] \sqrt{s_{g} d g^{3}} \tag{49}
\end{equation*}
$$

Watanabe et al.[2] proposed the following equation considering the gravitational effect in streamline and transverse directions.

$$
\begin{equation*}
\widetilde{q^{\xi}}=q_{b}\left[\frac{\widetilde{u_{b}^{\xi}}}{V_{b}}-\gamma\left(\frac{\partial z_{b}}{\partial \widetilde{\xi}}+\cos \theta \frac{\partial z_{b}}{\partial \widetilde{\eta}}\right)\right] \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{q^{\eta}}=q_{b}\left[\frac{\widetilde{u_{b}^{\eta}}}{V_{b}}-\gamma\left(\frac{\partial z_{b}}{\partial \widetilde{\eta}}+\cos \theta \frac{\partial z_{b}}{\partial \widetilde{\xi}}\right)\right] \tag{51}
\end{equation*}
$$

in which, $\widetilde{u_{b}^{\xi}}$ and $\widetilde{u_{b}^{\eta}}$ are the velocity components at the bottom in ξ and η directions, V_{b} is the total velocity at the bottom, θ is an angle between ξ axis and η-axis. γ is an adjustment coefficient for slope gravitational effect. Hasegawa[3] proposed the following formula.

$$
\begin{equation*}
\gamma=\sqrt{\frac{\tau_{* c}}{\mu_{s} \mu_{k} \tau_{*}}} \tag{52}
\end{equation*}
$$

in which, μ_{s} and μ_{k} are static and kinetic friction coefficient of bed material.

7 Velocity components at channel bottom

The following simple relation is assumed between depth averaged flow velocities and bottom velocities.

$$
\begin{equation*}
\widetilde{u_{b}^{s}}=\beta V \tag{53}
\end{equation*}
$$

in which, $\widetilde{u_{b}^{s}}$ is bottom velocity along the depth averaged stream line. Engelund[4] used a parabolic function for velocity profile in depth direction, and proposed the following function.

$$
\begin{equation*}
\beta=3(1-\sigma)(3-\sigma), \quad \sigma=\frac{3}{\phi_{0} \kappa+1} \tag{54}
\end{equation*}
$$

in which, ϕ_{0} is velocity coefficient $\left(=V / u_{*}\right), \kappa$ Von Karman's constant $(=0.4)$.
When the stream line is curved, the secondary flow, or spiral flow is generated. The following equation is used to estimate the velocity components considering secondarily flow.

$$
\begin{equation*}
\widetilde{u_{b}^{n}}=\widetilde{u_{b}^{s}} N_{*} \frac{h}{r_{s}} \tag{55}
\end{equation*}
$$

in which, $\widetilde{u_{b}^{n}}$ is a bottom velocity perpendicular to the direction of stream line, which is positive 90 degree clock wise direction from the stream line direction, r_{s} is a radius of curvature of the streamline, N_{*} is a constant $(=7$, Engelund[4]).

From Eqs.(53) and (55) V_{b} in Eqs.(50) and (51) can be expressed as,

$$
\begin{equation*}
V_{b}=\sqrt{\widetilde{u_{b}^{s}}+\widetilde{u_{b}^{n}}} \approx \widetilde{u_{b}^{s}} \tag{56}
\end{equation*}
$$

it is because the order of $\widetilde{u_{b}^{n}}$ is one order smaller than that of $\widetilde{u_{b}^{s}} \cdot \widetilde{u_{b}^{\xi}}$ and $\widetilde{u_{b}^{\eta}}$ can be obtained by the following equations.

$$
\begin{align*}
\widetilde{u_{b}^{\xi}}= & \frac{\partial \widetilde{\xi}}{\partial s} \widetilde{u_{b}^{s}}+\frac{\partial \widetilde{\xi}}{\partial n} \widetilde{u_{b}^{n}}=\left(\frac{\partial x}{\partial s} \frac{\partial \widetilde{\xi}}{\partial x}+\frac{\partial y}{\partial s} \frac{\partial \widetilde{\xi}}{\partial y}\right) \widetilde{u_{b}^{s}}+\left(\frac{\partial x}{\partial n} \frac{\partial \widetilde{\xi}}{\partial x}+\frac{\partial y}{\partial n} \frac{\partial \widetilde{\xi}}{\partial y}\right) \widetilde{u_{b}^{n}} \\
& =\left(\cos \theta_{s} \widetilde{\xi}_{x}+\sin \theta_{s} \widetilde{\xi}_{y}\right) \widetilde{u_{b}^{s}}+\left(-\sin \theta_{s} \widetilde{\xi}_{x}+\cos \theta_{s} \widetilde{\xi}_{y}\right) \widetilde{u_{b}^{n}} \\
= & \frac{1}{\xi_{r}}\left\{\left(\cos \theta_{s} \xi_{x}+\sin \theta_{s} \xi_{y}\right) \widetilde{u_{b}^{s}}+\left(-\sin \theta_{s} \xi_{x}+\cos \theta_{s} \xi_{y}\right) \widetilde{u_{b}^{n}}\right\} \tag{57}\\
\widetilde{u_{b}^{\eta}}= & \frac{\partial \widetilde{\eta}}{\partial s} \widetilde{u_{b}^{s}}+\frac{\partial \widetilde{\eta}}{\partial n} \widetilde{u_{b}^{n}}=\left(\frac{\partial x}{\partial s} \frac{\partial \widetilde{\eta}}{\partial x}+\frac{\partial y}{\partial s} \frac{\partial \widetilde{\eta}}{\partial y}\right) \widetilde{u_{b}^{s}}+\left(\frac{\partial x}{\partial n} \frac{\partial \widetilde{\eta}}{\partial x}+\frac{\partial y}{\partial n} \frac{\partial \widetilde{\eta}}{\partial y}\right) \widetilde{u_{b}^{n}} \\
& =\left(\cos \theta_{s} \widetilde{\eta}_{x}+\sin \theta_{s} \widetilde{\eta}_{y}\right) \widetilde{u_{b}^{s}}+\left(-\sin \theta_{s} \widetilde{\eta}_{x}+\cos \theta_{s} \widetilde{\eta}_{y}\right) \widetilde{u_{b}^{n}} \\
= & \frac{1}{\eta_{r}}\left\{\left(\cos \theta_{s} \eta_{x}+\sin \theta_{s} \eta_{y}\right) \widetilde{u_{b}^{s}}+\left(-\sin \theta_{s} \eta_{x}+\cos \theta_{s} \eta_{y}\right) \widetilde{u_{b}^{n}}\right\} \tag{58}
\end{align*}
$$

in which, s and n are axes along the streamline and it's orthogonal, and θ_{s} is an angle between x axis and stream line, in which, the following relations are used.

$$
\begin{array}{crrl}
\frac{\partial x}{\partial n} & =-\frac{v}{V}=-\sin \theta_{s}, & \frac{\partial y}{\partial n}=\frac{u}{V}=\cos \theta_{s} \\
\frac{\partial x}{\partial s} & =\frac{u}{V}=\cos \theta_{s}, & \frac{\partial y}{\partial s}=\frac{v}{V}=\sin \theta_{s} \tag{60}
\end{array}
$$

8 Streamline curvature

$$
\begin{gather*}
\frac{1}{r_{s}}=\frac{\partial \theta_{s}}{\partial s} \tag{61}\\
\theta_{s}=\tan ^{-1}\left(\frac{v}{u}\right) \tag{62}\\
\frac{1}{r_{s}}=\frac{\partial}{\partial s}\left[\tan ^{-1}(T)\right]=\frac{\partial}{\partial T}\left[\tan ^{-1}(T)\right] \frac{\partial T}{\partial s}=\frac{1}{1+T^{2}} \frac{\partial T}{\partial s} \tag{63}
\end{gather*}
$$

in which, $T=v / u$, and

$$
\begin{gather*}
\frac{1}{1+T^{2}}=\frac{1}{1+\left(\frac{v}{u}\right)^{2}}=\frac{u^{2}}{u^{2}+v^{2}}=\frac{u^{2}}{V^{2}} \tag{64}\\
\frac{\partial T}{\partial s}=\frac{\partial}{\partial s}\left(\frac{v}{u}\right)=\frac{u \frac{\partial v}{\partial s}-v \frac{\partial u}{\partial s}}{u^{2}} \tag{65}\\
\frac{\partial}{\partial s}=\frac{\partial x}{\partial s} \frac{\partial}{\partial x}+\frac{\partial y}{\partial s} \frac{\partial}{\partial y}=\frac{u}{V} \frac{\partial}{\partial x}+\frac{v}{V} \frac{\partial}{\partial y} \\
=\frac{u}{V}\left(\xi_{x} \frac{\partial}{\partial \xi}+\eta_{x} \frac{\partial}{\partial \eta}\right)+\frac{v}{V}\left(\xi_{y} \frac{\partial}{\partial \xi}+\eta_{y} \frac{\partial}{\partial \eta}\right) \tag{66}
\end{gather*}
$$

Finally, the radius $1 / r_{s}$ is express as,

$$
\begin{align*}
\frac{1}{r_{s}} & =\frac{1}{V^{3}}\left[u^{2}\left(\xi_{x} \frac{\partial v}{\partial \xi}+\eta_{x} \frac{\partial v}{\partial \eta}\right)+u v\left(\xi_{y} \frac{\partial v}{\partial \xi}+\eta_{y} \frac{\partial v}{\partial \eta}\right)\right. \\
& \left.-u v\left(\xi_{x} \frac{\partial u}{\partial \xi}+\eta_{x} \frac{\partial u}{\partial \eta}\right)-v^{2}\left(\xi_{y} \frac{\partial u}{\partial \xi}+\eta_{y} \frac{\partial u}{\partial \eta}\right)\right] \tag{67}
\end{align*}
$$

9 Procedure of the computation

(1) 2-d flow calculation $\left(u^{\xi}, u^{\eta}, u, v, h\right)$
(2) calculation of V by Eq.(46)
(3) calculation of τ_{*} by Eq.(47).
(4) calculation of q_{b} by Eq.(49).
(5) calculation of $\widetilde{u_{b}^{s}}$ by Eq.(53).
(6) calculation of $1 / r_{s}$ by Eq.(67).
(7) calculation of $\widetilde{u_{b}^{n}}$ by Eq.(55).
(8) calculation of $\widetilde{u_{b}^{\xi}}$ and $\widetilde{u_{b}^{\eta}}$ by Eqs. (57) and (58).
(9) calculation of $\widetilde{q^{\xi}}$ and $\widetilde{q^{\eta}}$ by Eqs.(50) and (51).
(10) calculation of q^{ξ} and q^{η} by Eq.(45).
(11) calculation of z_{b} by Eq.(43).

