1 Overview

This text describes the calculation formula used in a simple 3D flow calculation
model Nays2d+. In the Nays2d+, the calculation result of the depth averaged
two-dimensional calculation model and the theoretical solution of the secondary
flow in curved open channel flow are coupled, and a quasi three-dimensional flow
field is synthesized. The theoretical solution of the secondary flow in a uniform
curved channel proposed by Engelund (1974) D is used.

2 Velocity profile of main flow

The equation of motion of the uniform flow in s direction is expressed by the
following equation, in which s is the flow direction of the depth averaged flow,
and z is the vertical direction.
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Here, g is the gravitational acceleration, H is the water surface elevation, s
is the main flow direction, u, is the flow velocity in s direction, and z is the

vertical direction. Non-dimensional vertial distance ¢ is defined by the following
equation, in which z; is the channel bed elevation.
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¢ becomes 0 at channel bed and 1 at wataer surface. Asuming a steady uniform
flow, the energy slope S (= water surface slope) can be difined as follows,
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the depth averaged main flow < us; > velocity can be defined using us as,
us(Q) =< us > fs(C) (4)
Substituting this into the momentum equation(1),
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and integrated with respect to ¢, the following equation is obtained.
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Since the shear stress is zero at the water surface, a—c =0at (=1,
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Setting C; = 8, Eq. (6) can be rewritten as,
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Integrating this onece again with respect to ¢, fs can be reduced as follows.
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Considering the definition of depth averaging,
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Sbstituting this into (9),
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When the eddy viscussty v; is defined as vy = cu,h, and considering u. = v/ghsS,
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The bottom velocity u? is,
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If we set — as follows,
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Next equation is obtained.
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Figure 1: Coordinate system along the depth averaged stream line
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Substituting this into Eq.(13), followings are obtained.
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Setting r.a = xy and x; = ar, + 3
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Eq. (23) is the paraboric distribution of the main flow.

3 Velocity profile of the secondary flow

When the flow is curved as shown in Fig. 2, the momentum equation in n axis
can be represented as follows, in which n is the axis orthogonal to the s axis.
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in which,
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Here, 6 is the angle of depth averaged flow to the z-axis. The velocity profile
in n-direction is assumed to be as follows.
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in which, A, is the intensity of the secondary flow, and f,, is the non-dimensional
velocity distribution function. Substituting this into Eq. (24), the followings
are obtained.
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Setting A and B as follows,
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Eq. (27) becomes,
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And integrated with respect to ¢,
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At the water surface, since éfg = 0, which is the slip condition,
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Thus,
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Integrated this once again with respect to ¢,
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Since the depth integration of the secondary flow becomes zero because of it’s
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From this,
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Substitute this into Eq. (33),
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Each value in the above equation is as follows.
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Substituting them into Eq. (37) results,
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in which,
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The last term of the right hand side of this equation becomes, using the rela-
tionship of Eq. (45),
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When the intensity of the secondary flow A,, is defined as,
h
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The profile of the secondary flow finally becomes as follows.
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and,
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4 Bottom velocities

Bottom velocities can be clculated from the velocity profiles show in the previous
section.
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The bottom velocity equation often used in depth-averaged 2-dimensional mod-
els is the following form.
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Since the bottom velocity of the main flow is as follows,
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Bottom velocity of the secondary flow is,
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On the other hand, if we give the A, in the equilibrium state to Eq. (55), it
becomes as,
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By the comparison of Eq. (58) and Eq. (59), N, is reduced as,
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If we put a = 0.077 and Cy = 0.01, N, becomes 7.03, which is a common value
we use to determine the direction of the transverse bed load sediment transport.
Or, if we give the N, as a condition, C'y have to satisfy the following condition.
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5 Computation of quasi three dimensional flow

field

5.1 Radius of curvature of the depth averaged flow
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5.2 Three dimensional flow field
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Using these, the profile of us becomes,
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5.3 Direction of stream line and velocity distribution
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uS can be obtained from the continuity equation of,
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6 Relationship between Cartesian coordinate (x,y,z)
and general coordinate (&, 71, ()
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Therefore,
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