この節の作者: 清水康行 <yasu@i-ric.org>

Appendix II (s-n 座標の2次元流れの基礎式)

2次元流れ基礎方程式のs-n座標への変換

\(s-n\) 座標を直交曲線座標とします. \(s-n\) 座標において, \(s\) 軸は任意の曲線, \(n\) 軸は s 軸に直交する直線座標軸とします.

_images/xy_sn1.png

Figure 152 : \(x-y\) 座標と, \(s-n\) 座標

Figure 152 に示すように, \(x-y\) 座標における \(x\) 軸方向の流速を u, \(y\) 軸方向の流速を \(v\), \(s-n\) 座標における \(s\) 軸方向の流速を u_s, \(n\) 軸方向の流速を \(u_n\) とします. また, \(s\) 軸と \(x\) 軸の角度を \(\theta\), \(s\) 軸の曲率半径を \(r\) とします. Figure 152 に示すように, \(s\) 軸のプラス方向に向かって \(\theta\) が増えていくような曲がりの時の 曲率半径で \(r\) が正になるような定義とします.

曲率の定義より,

(391)\[r d\theta = ds, \; \; \cfrac{\partial \theta}{\partial s}= \cfrac{1}{r}, \; \; \cfrac{\partial \theta}{\partial n}=0\]

\(u,v\)\(u, v\) は下記の関係となります.

(392)\[\begin{split}u=u_s \cos \theta - u_n \sin \theta \\ v=u_s \sin \theta + u_n \cos \theta\end{split}\]
(393)\[\begin{split}u_s=u \cos \theta + v \sin \theta \\ u_n=-u \sin \theta + v \cos \theta\end{split}\]

また,各偏微分は下記のような関係になります.

(394)\[\begin{split}\left( \begin{array}{c} \cfrac{\partial}{\partial x} \\ \\ \cfrac{\partial}{\partial y} \end{array} \right) = \left( \begin{array}{cc} \cos{\theta} & -\sin{\theta} \\ \\ \sin{\theta} & \cos{\theta} \end{array} \right) \left( \begin{array}{c} \cfrac{\partial}{\partial s} \\ \\ \cfrac{\partial}{\partial n} \end{array} \right)\end{split}\]
(395)\[\begin{split}\left( \begin{array}{c} \displaystyle{{\partial}\over{\partial s}} \\ \\ \displaystyle{{\partial}\over{\partial n}} \end{array} \right) = \left( \begin{array}{cc} \cos{\theta} & \sin{\theta} \\ \\ -\sin{\theta} & \cos{\theta} \end{array} \right) \left( \begin{array}{c} \displaystyle{{\partial}\over{\partial x}} \\ \\ \displaystyle{{\partial}\over{\partial y}} \end{array} \right)\end{split}\]

また,

(396)\[\cfrac{\partial s}{\partial x}=\cos \theta, \; \; \cfrac{\partial s}{\partial y}=\sin \theta, \; \; \cfrac{\partial n}{\partial x}=-\sin \theta, \; \; \cfrac{\partial n}{\partial y}=\cos \theta\]

連続式

(397)\[\cfrac{\partial h}{\partial t} +\cfrac{\partial (hu)}{\partial x} +\cfrac{\partial (hv)}{\partial y}=0\]
(398)\[\cfrac{\partial h}{\partial t} +\cfrac{\partial}{\partial x} \left\{ h(u_s \cos \theta - u_n \sin \theta) \right\} +\cfrac{\partial}{\partial y} \left\{ h(u_s \sin \theta + u_n \cos \theta) \right\}=0\]
(399)\[\begin{split}\cfrac{\partial h}{\partial t} +\cos \theta \cfrac{\partial}{\partial s} \left\{ h(u_s \cos \theta - u_n \sin \theta) \right\} -\sin \theta \cfrac{\partial}{\partial n} \left\{ h(u_s \cos \theta - u_n \sin \theta) \right\} \\ +\sin \theta \cfrac{\partial}{\partial s} \left\{ h(u_s \sin \theta + u_n \cos \theta) \right\} +\cos \theta \cfrac{\partial}{\partial n} \left\{ h(u_s \sin \theta + u_n \cos \theta) \right\}=0\end{split}\]
(400)\[\begin{split}\cfrac{\partial h}{\partial t} +\cos \theta \left\{ \cos\theta \cfrac{\partial(h u_s)}{\partial s}+h u_s \cfrac{\partial \cos \theta}{\partial s} -\sin\theta \cfrac{\partial(h u_n)}{\partial s}-h u_n \cfrac{\partial \sin \theta}{\partial s} \right\} \\ -\sin \theta \left\{ \cos\theta \cfrac{\partial(h u_s)}{\partial n}+h u_s \cancelto{0}{\cfrac{\partial \cos \theta}{\partial n}} -\sin\theta \cfrac{\partial(h u_n)}{\partial n}-h u_n \cancelto{0}{\cfrac{\partial \sin \theta}{\partial n}} \right\} \\ +\sin \theta \left\{ \sin\theta \cfrac{\partial(h u_s)}{\partial s}+h u_s \cfrac{\partial \sin \theta}{\partial s} +\cos\theta \cfrac{\partial(h u_n)}{\partial s}+h u_n \cfrac{\partial \cos \theta}{\partial s} \right\} \\ +\cos \theta \left\{ \sin\theta \cfrac{\partial(h u_s)}{\partial n}+h u_s \cancelto{0}{\cfrac{\partial \sin \theta}{\partial n}} +\cos\theta \cfrac{\partial(h u_n)}{\partial n}+h u_n \cancelto{0}{\cfrac{\partial \cos \theta}{\partial n}} \right\}\end{split}\]
(401)\[\begin{split}\cfrac{\partial h}{\partial t} +\cos^2\theta\cfrac{\partial(hu_s)}{\partial s} \cancel{-\cos\theta\sin\theta hu_s\cfrac{\partial\theta}{\partial s}} \cancel{-\cos\theta\sin\theta\cfrac{\partial(hu_n)}{\partial s}}-\cos^2\theta hu_n\cfrac{\partial\theta}{\partial s} \\ \cancel{-\sin\theta\cos\theta\cfrac{\partial(hu_s)}{\partial n}} +\sin^2\theta\cfrac{\partial(hu_n)}{\partial n} \\ +\sin^2\theta\cfrac{\partial(hu_s)}{\partial s} +\cancel{\sin\theta\cos\theta hu_s\cfrac{\partial\theta}{\partial s}} \cancel{+\sin\theta\cos\theta\cfrac{\partial(hu_n)}{\partial s}}-\sin^2\theta hu_n\cfrac{\partial\theta}{\partial s} \\ \cancel{+\cos\theta\sin\theta\cfrac{\partial(hu_s)}{\partial n}} +\cos^2\theta\cfrac{\partial(hu_n)}{\partial n}\end{split}\]
(402)\[\begin{split}\cfrac{\partial h}{\partial t} +(\cos^2\theta+\sin^2\theta)\cfrac{\partial(hu_s)}{\partial s} -(\cos^2\theta+\sin^2\theta)hu_n\cfrac{\partial\theta}{\partial s} \\ +(\cos^2\theta+\sin^2\theta)\cfrac{\partial(hu_n)}{\partial n} =0\end{split}\]
(403)\[\cfrac{\partial h}{\partial t} +\cfrac{\partial(hu_s)}{\partial s}-\cfrac{hu_n}{r} +\cfrac{\partial(hu_n)}{\partial n} =0\]

ここで,

(404)\[\begin{split}\cfrac{\partial(rhu_n)}{\partial n}=r\cfrac{\partial(hu_n)}{\partial n} +hu_n\cfrac{\partial r}{\partial n} \\ = r\cfrac{\partial(hu_n)}{\partial n}-hu_n\end{split}\]

なので,最終的に \(s-n\) 座標における連続式は,

(405)\[\cfrac{\partial h}{\partial t} +\cfrac{\partial(hu_s)}{\partial s} +\cfrac{1}{r}\cfrac{\partial(rhu_n)}{\partial n} =0\]

となります.

運動方程式

\(x-y\) 座標における運動方程式を再記します.

(406)\[\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+ v \frac{\partial u}{\partial y}= -g \frac{\partial H}{\partial x} -\frac{\tau_x}{\rho h}+D_x\]
(407)\[\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+ v \frac{\partial v}{\partial y}= -g \frac{\partial H}{\partial y} -\frac{\tau_y}{\rho h}+D_y\]

ただし, \(x, y\) は互いに直交する平面座標軸, \(t\) は時間, \(u, v\)\(x, y\) 方向の水深平均流速, \(h\) は水深, \(H\) は水位, \(g\) は重力加速度, \(\tau_x, \tau_y\)\(x, y\) 方向の河床せん断力, \(\rho\) は水の密度, \(D_x, D_y\)\(x, y\) 方向の拡散項です.

(406) 式, (407) 式を以下のように表します.

(408)\[\begin{split}A_x = P_x + F_x + D_x\\ A_y = P_y + F_y + D_x\end{split}\]

ただし, \(A_x, A_y, P_x, P_y, F_x, F_y, D_x, D_y\) はそれぞれ, \(x, y\) 方向の移流項(加速度項), 圧力勾配項, 摩擦項および拡散項です. また, これらの添え字を \(s,n\) に変えたものを \(s,n\) 軸方向のそれぞれ 各項とします.

\(x, y\) 軸方向の加速度(移流項)

(409)\[\begin{split}A_x = {{\partial u}\over{\partial t}} +u{{\partial u}\over{\partial x}} +v{{\partial u}\over{\partial y}} ={{\partial u}\over{\partial t}} +u\left( \cos\theta{{\partial u}\over{\partial s}} -\sin\theta{{\partial u}\over{\partial n}} \right) +v\left( \sin\theta{{\partial u}\over{\partial s}} +\cos\theta{{\partial u}\over{\partial n}} \right) \\ ={{\partial u}\over{\partial t}}+ {{\partial u}\over{\partial s}} \underbrace{(u\cos\theta+v\sin\theta)}_{u_s} +{{\partial u}\over{\partial n}} \underbrace{(-u\sin\theta+v\cos\theta)}_{u_n} ={{\partial u}\over{\partial t}}+ u_s{{\partial u}\over{\partial s}} +u_n{{\partial u}\over{\partial n}}\end{split}\]
(410)\[\begin{split}A_y = {{\partial v}\over{\partial t}} +u{{\partial v}\over{\partial x}} +v{{\partial v}\over{\partial y}} ={{\partial u}\over{\partial t}} +u\left( \cos\theta{{\partial v}\over{\partial s}} -\sin\theta{{\partial v}\over{\partial n}} \right) +v\left( \sin\theta{{\partial v}\over{\partial s}} +\cos\theta{{\partial v}\over{\partial n}} \right) \\ ={{\partial v}\over{\partial t}}+ {{\partial v}\over{\partial s}} \underbrace{(u\cos\theta+v\sin\theta)}_{u_s} +{{\partial v}\over{\partial n}} \underbrace{(-u\sin\theta+v\cos\theta)}_{u_n} ={{\partial u}\over{\partial t}}+ u_s{{\partial v}\over{\partial s}} +u_n{{\partial v}\over{\partial n}}\end{split}\]

\(s\) 軸方向の加速度(移流項)

(411)\[ \begin{align}\begin{aligned}A_s = & A_x\cos\theta+A_y\sin\theta =\left( {{\partial u}\over{\partial t}}+ u_s{{\partial u}\over{\partial s}} +u_n{{\partial u}\over{\partial n}} \right)\cos\theta+ \left( {{\partial v}\over{\partial t}}+ u_s{{\partial v}\over{\partial s}} +u_n{{\partial v}\over{\partial n}} \right)\sin\theta\\= &\cos\theta{{\partial u}\over{\partial t}} + \cos\theta u_s {{\partial}\over{\partial s}} (u_s\cos\theta-u_n\sin\theta) +\cos\theta u_n{{\partial}\over{\partial n}} (u_s\cos\theta-u_n\sin\theta)\\& +\sin\theta{{\partial v}\over{\partial t}} +\sin\theta u_s {{\partial}\over{\partial s}} (u_s\sin\theta+u_n\cos\theta) +\sin\theta u_n {{\partial}\over{\partial n}} (u_s\sin\theta+u_n\cos\theta)\\= & {{\partial u_s}\over{\partial t}} +u_s\cos^2\theta {{\partial u_s}\over{\partial s}} +u_s^2\cos\theta{{\partial(\cos\theta)}\over{\partial s}} -u_s\sin\theta \cos\theta{{\partial u_n}\over{\partial s}} -u_s u_n\cos\theta{{\partial(\sin\theta)}\over{\partial s}}\\& +u_n\cos^2\theta {{\partial u_s}\over{\partial n}} +u_s u_n\cos\theta{{\partial(\cos\theta)}\over{\partial n}} -u_n\sin\theta \cos\theta{{\partial u_n}\over{\partial n}} -u_n^2\cos\theta{{\partial(\sin\theta)}\over{\partial n}}\\& +u_s\sin^2\theta {{\partial u_s}\over{\partial s}} +u_s^2\sin\theta{{\partial(\sin\theta)}\over{\partial s}} +u_s\sin\theta \cos\theta{{\partial u_n}\over{\partial s}} +u_s u_n\sin\theta{{\partial(\cos\theta)}\over{\partial s}}\\& +u_n\sin^2\theta {{\partial u_s}\over{\partial n}} +u_s u_n\sin\theta{{\partial(\sin\theta)}\over{\partial n}} +u_n\sin\theta \cos\theta{{\partial u_n}\over{\partial n}} +u_n^2\sin\theta{{\partial(\cos\theta)}\over{\partial n}}\\= & {{\partial u_s}\over{\partial t}} +u_s{{\partial u_s}\over{\partial s}} +u_n{{\partial u_s}\over{\partial n}}\\& +u_s^2\cos\theta{{\partial(\cos\theta)}\over{\partial s}} -u_s u_n\cos\theta{{\partial(\sin\theta)}\over{\partial s}} +u_s u_n\cos\theta{{\partial(\cos\theta)}\over{\partial n}} -u_n^2\cos\theta{{\partial(\sin\theta)}\over{\partial n}}\\& +u_s^2\sin\theta{{\partial(\sin\theta)}\over{\partial s}} +u_s u_n\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +u_s u_n\sin\theta{{\partial(\sin\theta)}\over{\partial n}} +u_n^2\sin\theta{{\partial(\cos\theta)}\over{\partial n}}\\= & {{\partial u_s}\over{\partial t}} +u_s{{\partial u_s}\over{\partial s}} +u_n{{\partial u_s}\over{\partial n}} +u_s^2\left\{\sin\theta{{\partial(\sin\theta)}\over{\partial s}} +\cos\theta{{\partial(\cos\theta)}\over{\partial s}}\right\}\\& +u_s u_n\left\{ \cos\theta{{\partial(\cos\theta)}\over{\partial n}} -\cos\theta{{\partial(\sin\theta)}\over{\partial s}} +\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +\sin\theta{{\partial(\sin\theta)}\over{\partial n}} \right\}\\& +u_n^2\left\{ \sin\theta{{\partial(\cos\theta)}\over{\partial n}} -\cos\theta{{\partial(\sin\theta)}\over{\partial n}} \right\}\end{aligned}\end{align} \]

ここで,

(412)\[\sin\theta{{\partial(\sin\theta)}\over{\partial s}} +\cos\theta{{\partial(\cos\theta)}\over{\partial s}} =\sin\theta\cos\theta{{\partial \theta}\over{\partial s}} -\cos\theta\sin\theta{{\partial \theta}\over{\partial s}}=0\]
(413)\[ \begin{align}\begin{aligned}& \cos\theta{{\partial(\cos\theta)}\over{\partial n}} -\cos\theta{{\partial(\sin\theta)}\over{\partial s}} +\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +\sin\theta{{\partial(\sin\theta)}\over{\partial n}}\\= & \cancel{-\cos\theta\sin\theta{{\partial \theta}\over{\partial n}}} -\cos^2\theta{{\partial \theta}\over{\partial s}} -\sin^2\theta{{\partial \theta}\over{\partial s}} \cancel{+\sin\theta\cos\theta{{\partial \theta}\over{\partial n}}}\\= &-\left(\cos^2\theta+\sin^2\theta\right){{\partial \theta}\over{\partial s}}\\= &-{{\partial \theta}\over{\partial s}}=-{1 \over r}\end{aligned}\end{align} \]

また,

(414)\[\sin\theta{{\partial(\cos\theta)}\over{\partial n}} -\cos\theta{{\partial(\sin\theta)}\over{\partial n}}= -\sin^2\theta{{\partial \theta}\over{\partial n}} -\cos^2\theta{{\partial \theta}\over{\partial n}} =-{{\partial \theta}\over{\partial n}}=0\]

なので, \(s\) 軸方向の移流項は次式のようになります.

(415)\[A_s= {{\partial u_s}\over{\partial t}} +u_s{{\partial u_s}\over{\partial s}} +u_n{{\partial u_s}\over{\partial n}} -{{u_s u_n}\over{r}}\]

\(n\) 軸方向の加速度(移流項)

(416)\[ \begin{align}\begin{aligned}A_n = & -A_x\sin\theta+A_y\cos\theta \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad\\= & -\left( {{\partial u_x}\over{\partial t}}+ u_s{{\partial u_x}\over{\partial s}} +u_n{{\partial u_x}\over{\partial n}} \right)\sin\theta+ \left( {{\partial u_y}\over{\partial t}}+ u_s{{\partial u_y}\over{\partial s}} +u_n{{\partial u_y}\over{\partial n}} \right)\cos\theta\\= & {{\partial u_n}\over{\partial t}} -\sin\theta u_s {{\partial}\over{\partial s}} (u_s\cos\theta-u_n\sin\theta) -\sin\theta u_n{{\partial}\over{\partial n}} (u_s\cos\theta-u_n\sin\theta)\\& +\cos\theta u_s {{\partial}\over{\partial s}} (u_s\sin\theta+u_n\cos\theta) +\cos\theta u_n {{\partial}\over{\partial n}} (u_s\sin\theta+u_n\cos\theta)\\= & {{\partial u_n}\over{\partial t}} -u_s\sin\theta\cos\theta {{\partial u_s}\over{\partial s}} -u_s^2\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +u_s\sin^2\theta {{\partial u_n}\over{\partial s}} +u_s u_n\sin\theta{{\partial(\sin\theta)}\over{\partial s}}\\& -u_n\sin\theta\cos\theta {{\partial u_s}\over{\partial n}} -u_s u_n\sin\theta{{\partial(\cos\theta)}\over{\partial n}} +u_n\sin^2\theta {{\partial u_n}\over{\partial n}} +u_n^2\sin\theta{{\partial(\sin\theta)}\over{\partial n}}\\& +u_s\cos\theta\sin\theta {{\partial u_s}\over{\partial s}} +u_s^2\cos\theta{{\partial(\sin\theta)}\over{\partial s}} +u_s\cos^2\theta{{\partial u_n}\over{\partial s}} +u_s u_n\cos\theta{{\partial(\cos\theta)}\over{\partial s}}\\& +u_n\sin\theta\cos\theta {{\partial u_s}\over{\partial n}} +u_s u_n\cos\theta{{\partial(\sin\theta)}\over{\partial n}} +u_n\cos^2\theta{{\partial u_n}\over{\partial n}} +u_n^2\cos\theta{{\partial(\cos\theta)}\over{\partial n}}\\= & {{\partial u_n}\over{\partial t}} +u_s{{\partial u_n}\over{\partial s}} +u_n{{\partial u_n}\over{\partial n}}\\& -u_s^2\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +u_s u_n\sin\theta{{\partial(\sin\theta)}\over{\partial s}} -u_s u_n\sin\theta{{\partial(\cos\theta)}\over{\partial n}} +u_n^2\sin\theta{{\partial(\sin\theta)}\over{\partial n}}\\& +u_s^2\cos\theta{{\partial(\sin\theta)}\over{\partial s}} +u_s u_n\cos\theta{{\partial(\cos\theta)}\over{\partial s}} +u_s u_n\cos\theta{{\partial(\sin\theta)}\over{\partial n}} +u_n^2\cos\theta{{\partial(\cos\theta)}\over{\partial n}}\\= & {{\partial u_n}\over{\partial t}} +u_s{{\partial u_n}\over{\partial s}} +u_n{{\partial u_n}\over{\partial n}} +u_s^2\left\{-\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +\cos\theta{{\partial(\sin\theta)}\over{\partial s}}\right\}\\& +u_s u_n\left\{ \sin\theta{{\partial(\sin\theta)}\over{\partial s}} -\sin\theta{{\partial(\cos\theta)}\over{\partial n}} +\cos\theta{{\partial(\cos\theta)}\over{\partial s}} +\cos\theta{{\partial(\sin\theta)}\over{\partial n}} \right\}\\& +u_n^2\left\{ \sin\theta{{\partial(\sin\theta)}\over{\partial n}} +\cos\theta{{\partial(\cos\theta)}\over{\partial n}} \right\}\end{aligned}\end{align} \]

ここで,

(417)\[-\sin\theta{{\partial(\cos\theta)}\over{\partial s}} +\cos\theta{{\partial(\sin\theta)}\over{\partial s}} =\sin^2\theta{{\partial \theta}\over{\partial s}} +\cos^2\theta{{\partial \theta}\over{\partial s}}={1 \over r}\]
(418)\[ \begin{align}\begin{aligned}& \sin\theta{{\partial(\sin\theta)}\over{\partial s}} -\sin\theta{{\partial(\cos\theta)}\over{\partial n}} +\cos\theta{{\partial(\cos\theta)}\over{\partial s}} +\cos\theta{{\partial(\sin\theta)}\over{\partial n}}\\= & \cancel{\sin\theta\cos\theta{{\partial \theta}\over{\partial s}}} +\sin^2\theta{{\partial \theta}\over{\partial n}} \cancel{-\sin\theta\cos\theta{{\partial \theta}\over{\partial s}}} +\cos^2\theta{{\partial \theta}\over{\partial n}}\\= & {{\partial \theta}\over{\partial n}}=0\end{aligned}\end{align} \]
(419)\[\sin\theta{{\partial(\sin\theta)}\over{\partial n}} +\cos\theta{{\partial(\cos\theta)}\over{\partial n}}= \sin\theta\cos\theta{{\partial \theta}\over{\partial n}} -\sin\theta\cos\theta{{\partial \theta}\over{\partial n}} =0\]

なので, \(n\) 軸方向の移流項は次式のようになります.

(420)\[A_n= {{\partial u_n}\over{\partial t}} +u_s{{\partial u_n}\over{\partial s}} +u_n{{\partial u_n}\over{\partial n}} +{{u_s^2}\over{r}}\]

圧力項

\(x,y\) 軸方向の圧力勾配は,

(421)\[ \begin{align}\begin{aligned}P_x= & -g\cfrac{\partial H}{\partial x} =-g\left(\cos\theta\cfrac{\partial H}{\partial s} -\sin\theta\cfrac{\partial H}{\partial n} \right)\\P_y= & -g\cfrac{\partial H}{\partial y} =-g\left(\sin\theta\cfrac{\partial H}{\partial s} +\cos\theta\cfrac{\partial H}{\partial n} \right)\end{aligned}\end{align} \]

これを, \(s, n\) 軸方向の圧力勾配, \(P_s, P_n\) に変換します.

(422)\[\begin{split}P_s= & P_x \cos\theta+P_y \sin\theta \\ = & \cos\theta\left\{ -g\left(\cos\theta\cfrac{\partial H}{\partial s} -\sin\theta\cfrac{\partial H}{\partial n} \right) \right\} +\sin\theta\left\{ -g\left(\sin\theta\cfrac{\partial H}{\partial s} +\cos\theta\cfrac{\partial H}{\partial n} \right) \right\} \\ = & g\left( -\cos^2\theta\cfrac{\partial H}{\partial s} \cancel{+\cos\theta\sin\theta\cfrac{\partial H}{\partial n}} -\sin^2\theta\cfrac{\partial H}{\partial s} \cancel{-\cos\theta\sin\theta\cfrac{\partial H}{\partial n}} \right) \\ = & -g\cfrac{\partial H}{\partial s}\end{split}\]
(423)\[\begin{split}P_n= & -P_x \sin\theta+P_y \cos\theta \\ = & -\sin\theta\left\{ -g\left(\cos\theta\cfrac{\partial H}{\partial s} -\sin\theta\cfrac{\partial H}{\partial n} \right) \right\} +\cos\theta\left\{ -g\left(\sin\theta\cfrac{\partial H}{\partial s} +\cos\theta\cfrac{\partial H}{\partial n} \right) \right\} \\ = & g\left( \cancel{\cos\theta\sin\theta\cfrac{\partial H}{\partial s}} -\sin^2\theta\cfrac{\partial H}{\partial n} \cancel{-\cos\theta\sin\theta\cfrac{\partial H}{\partial s}} -\cos^2\theta\cfrac{\partial H}{\partial s} \right) \\ =& -g\cfrac{\partial H}{\partial n}\end{split}\]

摩擦項

\(x,y\) 軸方向の摩擦項目はマニング則を用いた場合, (330) より, 以下のように表されます.

(424)\[ \begin{align}\begin{aligned}F_x = & -\cfrac{\tau_x}{\rho h} = -{{g n_m^2 u \sqrt{u^2+v^2}}\over h^{4/3}} =-u V_\tau\\F_y = & -\cfrac{\tau_y}{\rho h} = -{{g n_m^2 u \sqrt{u^2+v^2}}\over h^{4/3}} =-v V_\tau\end{aligned}\end{align} \]

ただし,

(425)\[V_\tau = \cfrac{g n_m^2 \sqrt{u^2+v^2}}{h^{4/3}} = \cfrac{g n_m^2 \sqrt{u_s^2+u_n^2}}{h^{4/3}}\]

(424) 式を, \(s,n\) 軸方向に変換します. \(F_s, F_n\)\(s, n\) 方向の摩擦項とします.

(426)\[ \begin{align}\begin{aligned}F_s & = F_x\cos\theta+F_y\sin\theta = -u V_\tau\cos\theta-v V_\tau\sin\theta\\& = -(u_s \cos \theta - u_n \sin \theta)V_\tau\cos\theta -(u_s \sin \theta + u_n \cos \theta) V_\tau\sin\theta\\& = -u_s V_\tau \cos^2 \theta \cancel{- u_n V_\tau \sin\theta\cos\theta} -u_s V_\tau \sin^2\theta +\cancel{u_n V_\tau \sin\theta\cos\theta}\\& = -u_s(\sin^2\theta+\cos^2 \theta)V_\tau = -u_s V_\tau =-{{g n_m^2 u_s \sqrt{u_s^2+u_n^2}}\over h^{4/3}}\end{aligned}\end{align} \]
(427)\[ \begin{align}\begin{aligned}F_n & = -F_x\sin\theta+F_y\cos\theta =u V_\tau\sin\theta-v V_\tau\cos\theta\\& = (u_s \cos\theta - u_n \sin \theta)V_\tau\sin\theta -(u_s \sin \theta + u_n \cos \theta)V_\tau\cos\theta\\& = \cancel{u_s V_\tau\cos\theta\sin\theta}-u_nV_\tau\sin^2\theta -\cancel{u_s V_\tau\sin\theta\cos\theta}-u_nV_\tau\cos^2\theta\\& = -u_n(\sin^2\theta+\cos^2 \theta)V_\tau = -u_n V_\tau =-{{g n_m^2 u_n \sqrt{u_s^2+u_n^2}}\over h^{4/3}}\end{aligned}\end{align} \]

拡散項

\(s-n\) 座標における濃度拡散方程式( (437) 式)と同様の考え方で運動量の拡散については 以下のように表されます.

(428)\[ \begin{align}\begin{aligned}D_s & = \cfrac{\partial}{\partial s}\left(\nu_t\cfrac{\partial u_s}{\partial s}\right) +\cfrac{\partial}{\partial n}\left(\nu_t\cfrac{\partial u_s}{\partial n}\right) +\cfrac{\nu_t}{r}\cfrac{\partial u_s}{\partial n}\\D_n & =\cfrac{\partial}{\partial s}\left(\nu_t \cfrac{\partial u_n}{\partial s}\right) +\cfrac{\partial}{\partial n}\left(\nu_t\cfrac{\partial u_n}{\partial n}\right) +\cfrac{\nu_t}{r}\cfrac{\partial u_n}{\partial n}\end{aligned}\end{align} \]

まとめ

以上より, \(s-n\) 座標における2次元自由水面流れの連続式および運動方程式は以下となります.

(429)\[\cfrac{\partial h}{\partial t} +\cfrac{\partial(hu_s)}{\partial s} +\cfrac{1}{r}\cfrac{\partial(rhu_n)}{\partial n} =0\]
(430)\[ \begin{align}\begin{aligned}{{\partial u_s}\over{\partial t}} +u_s{{\partial u_s}\over{\partial s}} +u_n{{\partial u_s}\over{\partial n}} -{{u_s u_n}\over{r}}= \hspace{4.5cm}\\-g\cfrac{\partial H}{\partial s} -{{g n_m^2 u_s \sqrt{u_s^2+u_n^2}}\over h^{4/3}} +\cfrac{\partial}{\partial s}\left(\nu_t\cfrac{\partial u_s}{\partial s}\right) +\cfrac{\partial}{\partial n}\left(\nu_t\cfrac{\partial u_s}{\partial n}\right) +\cfrac{\nu_t}{r}\cfrac{\partial u_s}{\partial n}\end{aligned}\end{align} \]
(431)\[ \begin{align}\begin{aligned}{{\partial u_n}\over{\partial t}} +u_s{{\partial u_n}\over{\partial s}} +u_n{{\partial u_n}\over{\partial n}} +{{u_s^2}\over{r}}= \hspace{4.5cm}\\-g\cfrac{\partial H}{\partial n} -{{g n_m^2 u_n \sqrt{u_s^2+u_n^2}}\over h^{4/3}} +\cfrac{\partial}{\partial s}\left(\nu_t \cfrac{\partial u_n}{\partial s}\right) +\cfrac{\partial}{\partial n}\left(\nu_t\cfrac{\partial u_n}{\partial n}\right) +\cfrac{\nu_t}{r}\cfrac{\partial u_n}{\partial n}\end{aligned}\end{align} \]